
Breaking Bots: Enhancing CAPTCHA Design with Neural Style Transfer

Rinnara Sangpisit
Stanford University

450 Jane Stanford Way, Stanford, CA 94305
rinnara@stanford.edu

Abstract

Completely Automated Public Turing test to tell Com-
puters and Humans Apart (CAPTCHA) systems were de-
signed to protect online platforms from bot access. How-
ever, the rise of advanced computer vision models has ren-
dered CAPTCHA systems less secure as modern models
can solve CAPTCHAs with high accuracy. Neural style
transfer has emerged as a cutting-edge method to boost
the security of CAPTCHAs. By combining style represen-
tations of famous artwork with CAPTCHAs’ content repre-
sentations, this technique constructs augmented CAPTCHA
images that remain legible to humans but challenging for
machines to solve. In this project, I adopted neural style
transfer to generate more robust CAPTCHAs and imple-
mented a ResNet-9 model as the solver. My experimen-
tal results showed that the model’s accuracy decreased by
12.1% on the full CAPTCHA level and 3.8% on the charac-
ter level after neural style transfer, boosting the security of
CAPTCHAs.

1. Introduction
Bots frequently overwhelm critical platforms with spam,

fraudulent submissions, or malicious activity, including the
spread of misinformation and harassment on social media.
To mitigate this, many websites employ Completely Au-
tomated Public Turing test to tell Computers and Humans
Apart (CAPTCHA) systems to differentiate between hu-
mans and automated agents. For example, the U.S. visa
application site uses text-based CAPTCHAs with distorted,
multicolored characters, while platforms like Google em-
ploy image-click CAPTCHAs. However, the rise of ad-
vanced computer vision models has made CAPTCHA sys-
tems less secure. This project aims to understand the effec-
tiveness of cutting-edge model architecture in solving tradi-
tional text-based CAPTCHAs and explore the role of neural
style transfer in making these CAPTCHAs more resistant to
bots.

To evaluate the effectiveness of modern computer vision

architectures in solving text-based CAPTCHAs, I imple-
mented a Residual Network (ResNet-9) model due to its
strong performance and efficient architecture [10]. I gen-
erated train, validation, and test datasets of standard text-
based CAPTCHAs modeled after those currently used on
various websites to train and evaluate the model. There are
10,000 training data, 1,500 validation data, and 1,500 test
data. The accuracy scores on this dataset serve as the base-
line performance of the model.

Previous literature has demonstrated impressive results
of neural style transfer in decreasing the effectiveness of
automated CAPTCHA solvers. Inspired by these find-
ings, I decided to implement neural style transfer on the
CAPTCHA dataset to introduce greater complexity to the
data [9]. The preprocessed CAPTCHA images serve as the
content images and the starting point for target images. I
used Vincent van Gogh’s The Starry Night as the style im-
age [18]. Performing neural style transfer allowed me to
generate target images that resemble the structure of the
preprocessed CAPTCHA images while incorporating style
from The Starry Night. The resulting target images, referred
to as stylized images, remain similarly legible to the human
eye compared to non-stylized images.

After obtaining 10,000 stylized training data, 1,500 styl-
ized validation data, and 1,500 stylized test data, I evalu-
ated the baseline model’s performance on the stylized test
dataset to assess the model’s robustness to adversarial trans-
formations. Subsequently, I retrained the model on the styl-
ized training images, with hyperparameter tuning based on
stylized validation images, and evaluated its performance
on the stylized test images. The results provided insight into
the impact of neural style transfer on boosting the security
of standard CAPTCHAs.

2. Related Work
CAPTCHA Breaking Efforts
Previous studies have employed various image recog-

nition methods to develop CAPTCHA solvers with
state-of-the-art performance. For example, Tian and Xiong
introduced a generic solver combining unsupervised learn-

1

ing and representation learning and outperformed fully
supervised models with similar architecture [16]. Ye et al.
utilized a generative adversarial network-based approach
to solve various text-based CAPTCHA schemes, achieving
state-of-the-art results [19].

CAPTCHA Enhancements

Besides efforts to break CAPTCHAs, previous research
also explored various strategies to enhance the security and
robustness of text-based CAPTCHAs. Che et al. [3] em-
phasized the importance of data pre-processing by introduc-
ing a data selector that filters high-quality training data, fol-
lowed by a data augmentor that applies four distinct image
noise transformations. Their approach resulted in improved
model generalization. My project builds upon this idea by
adopting similar noise transformations in the data genera-
tion process.

Derea et al. [5] promoted model efficiency by using a
segmentation technique that uses binary images to divide
CAPTCHA images into components, allowing the use of
fewer softmax output layers. This reduces the model’s
parameter count, improving training speed and storage
efficiency. While my project does not directly adopt their
segmentation method, it draws from their approach by us-
ing one softmax head for each character in the CAPTCHA
for a more simplified model architecture that still maintains
reliable performance.

Neural Style Transfer

Neural style transfer enables the generation of images
with high perceptual complexity that combine the content
of an arbitrary image with the appearance of well-known
artworks [8] [9]. This algorithm iteratively optimizes a tar-
get image to match the desired content information and the
artwork’s style information [11]. Neural style transfer has
led to a number of successful industrial applications. For
example, Prisma, Ostagram, and Deep Forger offer services
to transform users’ images to match the appearance of fa-
mous work of art [1] [2].

Neural style transfer emerged as a cutting-edge tech-
nique to produce more robust CAPTCHAs that decrease
the effectiveness of automated CAPTCHA solvers. Dinh
et al. [6] combined adversarial example generation with
neural style transfer to produce CAPTCHAs that are sig-
nificantly more resilient to machine learning attacks while
remaining readable to humans. Another paper by Cheng et
al. [4] found that neural style transfer decreased the ma-
chine classification accuracy on image-based CAPTCHAs
by 16%, while the difficulty for humans remains the same.
These impressive findings inspired me to adopt neural style
transfer to augment standard CAPTCHAs with the goal of
enhancing their resistance to machine attacks.

3. Approach

3.1. Model Architecture

Due to its strong performance, Residual Networks
(ResNet) have been widely adopted for image recognition
tasks [10]. I adapted the core ResNet architecture to suit the
CAPTCHA recognition task, as illustrated in Figure 1. Each
input image first passes through an initial layer composed of
a convolutional layer, batch normalization, and ReLU acti-
vation. This is followed by several ResNet v1 blocks, where
each block includes two convolutional layers, batch normal-
ization, ReLU, and a skip connection added before the final
ReLU activation. Skip connections are applied only in pro-
jection blocks, where the input and output dimensions dif-
fer.

Unlike the original ResNet design that ends with global
average pooling and a linear layer, I modified the predic-
tion head to support sequence prediction for five-character
alphanumeric strings. Specifically, I applied spatial aver-
age pooling independently across five spatial segments of
the feature map, each representing one character. These
features were then passed to five separate fully connected
heads, each producing a character prediction, which were
concatenated to form the final output.

Figure 1: ResNet-9 Model Architecture

2

3.2. Neural Style Transfer

To enhance the robustness of the original CAPTCHA
dataset, I explored neural style transfer as an approach
to augment the dataset. Neural style transfer takes in a
content image and a style image and aims to construct a
target image that retains the structure of the content image
and takes on the texture of the style image [9]. To do so,
it obtains feature representations of the content, style, and
target images by passing the images in a forward pass
through the model to obtain feature representations after
each layer of the model [8]. Let Nl denote the number
of filters in layer l and Ml be the size of each filter i.e.
height × width. These feature representations are used to
calculate loss, which is used to compute gradients in order
to construct the target image.

Content Loss. The content loss measures the con-
tent difference between the content and target images. Let
p⃗ and x⃗ be the content and target images, and P l and F l

be their respective feature representations at layer l in the
model. I define the content loss as the squared-error loss
between the two feature representations:

Lcontent(p⃗, x⃗, l) =
1

2

∑
i,j(F

l
ij − P l

ij)
2

Style Loss. To capture style representations, I need
an additional feature space on top of the features that are
outputted from each layer of the model. This feature space
consists of correlations between the outputs from different
filters. The feature correlations are given by the Gram ma-
trix Gl, where Gl

ij is the inner product between the vector-
ized feature maps i and j in layer l:

Gl
ij =

∑
k F

l
ikF

l
jk

The style loss captures the style distance between the style
and target images. It is defined as the mean squared loss be-
tween the Gram matrices of the target image and the style
image. Let a⃗ and x⃗ be the style image and the target im-
age, and Al and Gl be their respective style representations
(Gram matrices) in layer l. The style loss in layer l, repre-
sented by El can be computed as:

El =
1

4N2
l M

2
l

∑
i,j(G

l
ij −Al

ij)
2

Each layer’s contribution to the total style loss is set by
weighting factors wis. Thus,

Lstyle(⃗a, x⃗) =
∑L

l=0 wlEl

In the scope of this project, I assumed that each layer

contributes equally to the style loss. Therefore, wl =
1

|L|
.

Total Loss. The total loss combines the content loss
and the style loss:

Ltotal(p⃗, a⃗, x⃗) = αLcontent(p⃗, x⃗) + βLstyle(⃗a, x⃗)

where α and β are weighting factors of the content loss and
the style loss respectively.

Optimization Loop. The ResNet-9 model has 4
ResNet v1 blocks, blocks 1-4, which comprise the 4 model
layers. Each model layer contributes to either the content
loss or style loss [9]. The initial layers of the model
effectively recognize basic patterns of the input data, while
later layers capture more subtle characteristics, allowing
for a more precise approximation of the data [13] [15].
Therefore, I selected three style layers - block 1, block 2,
and block 3 - for style reconstruction and one content layer
- block 4 - for content reconstruction. Only the content
layers contribute to the content loss, and only the style
layer contributes to the style loss.

To synthesize a new image that matches the content rep-
resentations of p⃗ and style representations of a⃗, I started
with a base target image to optimize on. The base image
could be a random white noise image or the content image
itself. In this case, I use the content image as the base im-
age because it allows for faster convergence in generating
the synthesized image. The style image used in all stylized
images is Vincent van Gogh’s The Starry Night [18].

I performed repeated optimization loops on the target im-
age. In each iteration, I used feature representations to com-
pute the total loss and gradient to perform gradient descent.
After repeating the optimization loop for 200 iterations, the
best image, which minimizes the total loss, is saved as the
synthesized image. Figure 2 illustrates this process.

Figure 2: Neural style transfer diagram [9]

3.3. Feature Extraction

To implement Neural style transfer, feature representa-
tions of content and style images from each layer of the
model are precomputed for an efficient optimization loop.
Content representations are obtained by passing the content
image to the model and registering the outputs after each
layer using hooks. Content representations at each layer

3

have different shapes. For example, the output of the con-
tent image after layer 1 has shape (16, 64, 128). This means
there are 16 feature maps, each with shape 64x128.

Style representations are obtained by passing the style
image to the model and applying a feature space upon it.
For example, after layer 1, I obtained 16 feature maps, each
with shape 64x128. The feature correlations between these
feature maps, given by the Gram matrix G1 ∈ R16×16, are
the style representations at the 1st layer.

The target representations are not precomputed but ob-
tained and updated in each optimization loop. In each itera-
tion, I performed a forward pass of the target image through
the model to obtain its feature representations. Then, I cal-
culated loss using the target representations and precom-
puted content and style representations. The loss is used to
update the target image, and in turn, its feature representa-
tions for the next iteration.

4. Data

4.1. Data Generation

Based on the data generation method proposed by
Kokoska et al. in [12], I implemented a data gener-
ation pipeline for text-based CAPTCHAs. Each image
is a 70x250 pixel RGB canvas with a white background
and contains a random five-character alphanumeric string.
There are 62 character classes, composed of 26 uppercase
English alphabets, 26 lowercase English alphabets, and 10
numeral digits. Characters are drawn with random font size,
color, position jitter, and slight rotation to introduce ran-
domness. To simulate real CAPTCHA distortions, I added
noise and occlusions by incorporating pixels and colored
lines at random positions. With this pipeline, I generated
10,000 training images, 1,500 validation images, and 1,500
test images.

Generating the CAPTCHA dataset myself ensures a con-
sistent level of noise across all images. This consistency
will also facilitate data augmentation by reducing unwanted
variability that could interfere with its effectiveness. To as-
sess the quality of the datasets, I inspected examples of gen-
erated CAPTCHAs to ensure that their labels can be appro-
priately deciphered with the human eye. Figures 3 and 4
show examples of generated CAPTCHAs that support the
validity of the datasets.

Figure 3: CAPTCHA for “MUCtY”

Figure 4: CAPTCHA for “qBGoN”

4.2. Data Preprocessing

Following data generation, I implemented a data prepro-
cessing pipeline consisting of three steps: 1. Grayscale con-
version 2. Gaussian blurring 3. Binarization. Grayscale
transformation converts a colored image to a single-channel
image, which reduces the number of model parameters
without significantly affecting its recognition accuracy [17].
Then, I applied Gaussian blurring to the grayscale image to
reduce noise [14]. Finally, I employed binarization with an
adaptive threshold, a technique shown to enhance the speed
and performance of image recognition methods, to convert
the blurred image to a binary image composed solely of
black and white pixels [7].

These preprocessing steps help to reduce noise and stan-
dardize relevant features, leading to faster and more stable
training. The training, validation, and test datasets gener-
ated earlier were preprocessed and saved in separate fold-
ers. To visualize the preprocessing steps, Figure 5 shows
an original CAPTCHA image, while Figures 6, 7, and 8
show the image after applying grayscale conversion, Gaus-
sian blurring, and binarization, respectively.

Figure 5: Original CAPTCHA image

Figure 6: CAPTCHA after grayscale conversion

Figure 7: CAPTCHA after Gaussian blurring

Figure 8: CAPTCHA after binarization

4.3. Style Transfer Dataset

To augment the standard CAPTCHA dataset, I per-
formed neural style transfer on the preprocessed standard

4

CAPTCHAs. Neural style transfer involves extracting fea-
tures from the content image (standard CAPTCHAs) and
style image (The Starry Night) by passing them in a forward
pass through the model. Therefore, when performing style
transfer, I used preprocessed standard CAPTCHAs, which
are compatible inputs to the model, and no longer require
an additional preprocessing step afterwards.

There are 10,000 stylized training data, 1,500 stylized
validation data, and 1,500 stylized test data. Stylized im-
ages incorporate the texture of The Starry Night, resulting
in a textured background throughout the CAPTCHA im-
age. To visualize this, Figures 9 and 10 show examples of
CAPTCHA images after style transfer.

Figure 9: Stylized CAPTCHA for “6ei65”

Figure 10: Stylized CAPTCHA for “2GcwR”

4.4. Feature Representations

To perform style transfer, feature representations of the
content, style, and target images are used in loss optimiza-
tion. Figure 11 shows an example of content representations
after layer 1. Note that the output of a content image after
layer 1 has shape (16, 64, 128). Thus, there are 16 feature
maps, each with shape 64x128.

Figure 11: Content representations at the 1st layer

5. Experiments
5.1. Evaluation Method

To evaluate performance, I implemented accuracy met-
rics at both the full CAPTCHA and character levels. Full

CAPTCHA accuracy is computed as the proportion of
CAPTCHAs where all five characters are correctly pre-
dicted, while character accuracy measures the proportion
of correctly predicted characters across all characters in the
sample.

Full Accuracy =
correctly predicted CAPTCHAs

CAPTCHAs

Character Accuracy =
correctly predicted characters

characters

Since partial predictions are possible, character accuracy
is typically higher than full CAPTCHA accuracy. Due to
its granular evaluation, character-level validation accuracy
was used as the criterion for model selection during hyper-
parameter tuning.

5.2. Experimental Details

Baseline Model. To establish baseline performance, I
first trained the ResNet-9 model on the standard CAPTCHA
dataset using the cross-entropy loss function and performed
inference with the provided accuracy metrics. The model
was trained using the AdamW optimizer with a batch
size of 64 and various combinations of learning rate and
weight decay. Training was conducted for 15 epochs on an
NVIDIA L4 GPU. I prevented overfitting on the training
data by monitoring the training and validation loss graphs.

Neural Style Transfer Extensions. Next, I performed
neural style transfer to generate stylized CAPTCHA
datasets. To calculate total loss, I chose the respective
weighting factors of the content and style losses to be
(α, β) = (1, 1e-1). After experimenting with various
combinations of loss weights, I believe this selection
optimally preserves the legibility of CAPTCHA content
while allowing for stylistic transfer visibility. The AdamW
optimizer with a learning rate of 0.01 and weight decay of
5e-5 was used in the optimization loop to generate stylized
images.

After obtaining the stylized datasets, I first performed in-
ference on the optimized baseline model using the stylized
CAPTCHAs to assess the model’s robustness to adversarial
perturbations. Then, I trained the model on the stylized
CAPTCHA dataset using the total loss formula outlined
in the Approach section, and evaluated performance with
the provided accuracy metrics. Similar to the previous
training runs, the model was trained using the AdamW
optimizer with a batch size of 64 and various combinations
of learning rate and weight decay. Training was conducted
for 15 epochs on an NVIDIA L4 GPU. I monitored training
and validation losses to prevent overfitting.

Hyperparameter Sweeping. I conducted hyperpa-
rameter sweeps during the training runs both before and

5

after style transfer extensions. During training, I varied
the learning rate and weight decay used by the AdamW
optimizer. After iterative refinement, I obtained the model
with the highest character-level test accuracy out of all
hyperparameter setups. This approach allowed me to
experiment with different sets of parameters and select the
optimal configurations for the model.

6. Results

Table 1 summarizes the baseline model performance on
the standard CAPTCHA dataset. After hyperparameter tun-
ing, the optimized model with a learning rate of 0.01 and
weight decay of 5e-5 achieved a character-level accuracy of
95.60% and a full CAPTCHA accuracy of 80.00% on the
test dataset.

Learning
Rate

Weight
Decay

Dev Char
Accuracy

Dev Full
Accuracy

Test Char
Accuracy

Test Full
Accuracy

0.001 1e-5 93.29% 70.40% 93.35% 69.93%

0.01 5e-5 95.12% 77.27% 95.60% 80.00%

0.02 1e-4 94.95% 77.2% 95.36% 79.27%

0.05 3e-4 94.61% 75.33% 94.79% 76.53%

Table 1. Baseline model performance on standard CAPTCHAs

Next, I evaluated the baseline model’s performance on
stylized CAPTCHAs to assess its ability to generalize to
more adversarial CAPTCHA variations. According to Table
2, the model exhibits a drop in performance, achieving a
character-level accuracy of 76.12% and a full CAPTCHA
accuracy of 28.40% on the test dataset.

Learning
Rate

Weight
Decay

Test Char
Accuracy

Test Full
Accuracy

0.01 5e-5 76.12% 28.40%

Table 2. Baseline model performance on stylized CAPTCHAs

After training the model on stylized CAPTCHAs, I per-
formed inference to evaluate performance on the stylized
dataset. According to Table 3, the optimized model with a
learning rate of 0.01 and weight decay of 5e-5 achieves a
character-level accuracy of 91.81% and a full CAPTCHA
accuracy of 67.93% on the test dataset.

Based on these results, the model performance on de-
coding stylized CAPTCHAs dropped by 3.8% on the char-
acter level and a striking 12.1% on the full CAPTCHA level
compared to standard CAPTCHAs. The lower performance
supports the hypothesis that neural style transfer is effective
at making CAPTCHA architecture more secure towards bot
attacks.

Learning
Rate

Weight
Decay

Dev Char
Accuracy

Dev Full
Accuracy

Test Char
Accuracy

Test Full
Accuracy

0.001 1e-5 92.28% 67.07% 90.63% 64.93%

0.005 3e-5 92.09% 66.67% 91.08% 64.93%

0.01 5e-5 92.79% 67.97% 91.81% 67.93%

0.05 3e-5 92.24% 66.27% 91.52% 67.20%

Table 3. Model performance on stylized CAPTCHAs

7. Analysis
7.1. Model Input Evaluation

To gain insight into why neural style transfer produces
CAPTCHAs that are more robust against model-based de-
coding than standard CAPTCHAs, I inspected examples of
both types of CAPTCHAs from the train loader.

In Figure 12, I observed that the characters of the stan-
dard CAPTCHA appear mostly clearly with coarse-grained
noise scattered throughout the image. On the other hand,
in Figure 13, I observed that the textured background of
the stylized CAPTCHA creates fine-grained noise scattered
throughout the image. This noise interferes with charac-
ters, making it more challenging to decode them. Even
though stylized CAPTCHAs remain readable to humans,
their fine-grained noise likely contributed to the model’s
compromised quantitative performance.

Figure 12: Standard CAPTCHA from train loader

Figure 13: Stylized CAPTCHA from train loader

7.2. Error Evaluation

To understand the factors that influence model predic-
tions, I inspected examples of stylized CAPTCHAs that
the model mispredicted. In Figure 14, I observed that the
fine-grained noise interferes with the fourth character ‘y’,
making it appear as ‘v’ and causing the model to mispre-
dict. In Figure 15, the fine-grained noise significantly inter-
feres with the characters, causing mispredictions of multiple

6

characters in the image. These findings support the quanti-
tative results by showing that fine-grained noise produced
by style transfer undermines the model’s ability to interpret
CAPTCHAs.

Figure 14: Mispredicted stylized CAPTCHA (1)

Figure 15: Mispredicted stylized CAPTCHA (2)

7.3. Saliency Maps

To visualize parts of the CAPTCHA image that most in-
fluence the model’s prediction, I generated saliency maps
to analyze the model’s decision process. Figures 16 and 17
show the saliency maps for character positions 1 and 3 in
the CAPTCHA image. The saliency maps correctly high-
light relevant areas for character predictions, testifying to
the model’s interpretability.

Figure 16: Saliency map for 1st character

Figure 17: Saliency map for 3rd character

8. Conclusion
The results of this project demonstrated that neural style

transfer plays a role in enhancing CAPTCHA security, ev-

idenced by a respective 12.1% and 3.8% decrease in ac-
curacy at the full CAPTCHA and character level for the
ResNet-9 automated solver. These findings support previ-
ous literature that showed degraded model performance af-
ter neural style transfer. Qualitative evaluation revealed that
neural style transfer introduces fine-grained noise through-
out CAPTCHA images, which interferes with the charac-
ters, leading to incorrect model predictions.

Future studies can build on this project by exploring the
promising role of neural style transfer in other security-
based applications. Although style transfer is primarily
used for artistic applications today, this project highlights
its potential role in security domains in the future. Fur-
thermore, given the compelling results of combining neural
style transfer with adversarial examples [6], future research
can also explore the synergies between style transfer and
other CAPTCHA augmentation techniques, which may un-
cover enhanced methods for strengthening CAPTCHA se-
curity.

References
[1] Ostagram. https://www.ostagram.me/static_

pages/lenta?last_days=1000&locale=en.
[2] Prisma labs. https://prisma-ai.com/.
[3] A. Che, Y. Liu, H. Xiao, H. Wang, K. Zhang, and H.-N. Dai.

Augmented data selector to initiate text-based captcha attack.
Security and Communication Networks, 2021:1–9, 06 2021.

[4] Z. Cheng, H. Gao, Z. Liu, H. Wu, Y. Zi, and G. Pei. Image-
based captchas based on neural style transfer. The Institution
of Engineering and Technology, 2019.

[5] Z. Derea, B. Zou, A. A. Al-Shargabi, A. Thobhani, and
A. Abdussalam. Deep learning based captcha recognition
network with grouping strategy. Sensors, 23(23), 2023.

[6] N. Dinh, K. Tran-Trung, and V. Truong Hoang. Augment
captcha security using adversarial examples with neural style
transfer. IEEE Access, 11:1–1, 01 2023.

[7] A. Dionysiou and E. Athanasopoulos. Sok: Machine vs.
machine – a systematic classification of automated ma-
chine learning-based captcha solvers. Computers Security,
97:101947, 2020.

[8] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style, 2015.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[11] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song. Neural
style transfer: A review. IEEE Transactions on Visualization
and Computer Graphics, 26(11):3365–3385, 2020.

[12] J. Kokoska, A. Mengi, and Y. Mao. Machine learning
captcha solver, 2022.

[13] L. Roach, G.-M. Rignanese, A. Erriguible, and C. Aymonier.
Applications of machine learning in supercritical fluids re-

7

https://www.ostagram.me/static_pages/lenta?last_days=1000&locale=en
https://www.ostagram.me/static_pages/lenta?last_days=1000&locale=en
https://prisma-ai.com/

search. The Journal of Supercritical Fluids, 202:106051,
2023.

[14] R. Roadster. The simplest way(and probably one of the best)
to solve a text captcha, 2024.

[15] M. M. Taye. Theoretical understanding of convolutional neu-
ral network: Concepts, architectures, applications, future di-
rections. Computation, 11(3), 2023.

[16] S. Tian and T. Xiong. A generic solver combining unsuper-
vised learning and representation learning for breaking text-
based captchas. In Proceedings of The Web Conference 2020,
WWW ’20, page 860–871, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[17] X. Wan, J. Johari, and F. A. Ruslan. Adaptive captcha: A
crnn-based text captcha solver with adaptive fusion filter net-
works. Applied Sciences, 14(12), 2024.

[18] Wikipedia. The Starry Night — wikipedia. https://en.
wikipedia.org/wiki/The_Starry_Night, 2025.
[Online; accessed 04-June-2025].

[19] G. Ye, Z. Tang, D. Fang, Z. Zhu, Y. Feng, P. Xu, X. Chen, and
Z. Wang. Yet another text captcha solver: A generative ad-
versarial network based approach. CCS ’18, page 332–348,
New York, NY, USA, 2018. Association for Computing Ma-
chinery.

8

https://en.wikipedia.org/wiki/The_Starry_Night
https://en.wikipedia.org/wiki/The_Starry_Night

