
Fast Acoustic Wave Simulation with Neural Operators

Ngoc Vo
Stanford University

hnngocvo@stanford.edu

Fangjun Zhou
Stanford University

fzhou48@stanford.edu

Kevin Liu
Stanford University
liuxk@stanford.edu

Abstract

Simulating realistic acoustic wave propagation is essen-
tial for physically accurate audio rendering in computer
graphics. Traditional finite-difference time-domain (FDTD)
solvers provide accurate results but suffer from high com-
putational costs due to stability constraints on time and
space resolution. In this work, we investigate the use of
neural operator architectures for accelerating 2D acoustic
wave simulations. We implement and evaluate several neu-
ral operator models, including the Fourier Neural Opera-
tor (FNO), its low-rank tensorized variant (TFNO), the U-
Net-augmented U-FNO, and the bandlimited Convolutional
Neural Operator (CNO). Our experiments are conducted on
a novel dataset of animated acoustic scenes generated us-
ing the WaveBlender FDTD solver, capturing time-varying
boundary conditions and complex geometries. Furthere-
more, we demonstrate an iterative inference strategy to ex-
tend neural operators for long-horizon audio generation.
Quantitative results show that the CNO achieves the best
accuracy while being over 150 times faster than the FDTD
baseline. Our findings suggest that neural operators offer
a promising direction for real-time, high-fidelity acoustic
simulation in graphics applications.

1. Introduction
The propagation of sound waves through an acous-

tic medium is governed by partial differential equations
(PDEs), most commonly the linear wave equation. Simulat-
ing such wave dynamics is essential in domains like virtual
acoustics and computer graphics, where realistic sound ren-
dering requires accurate modeling of reflection, diffraction,
and interference patterns. Traditionally, finite-difference
time-domain (FDTD) solvers have been the method of
choice for these simulations. While FDTD methods are
conceptually straightforward and parallelizable, they suffer
from a significant limitation: to maintain numerical stabil-
ity, the Courant–Friedrichs–Lewy (CFL) condition requires
small time steps as spatial resolution increases. This leads
to substantial computational costs, making high-resolution

or real-time simulations infeasible in many settings.
Recent advances in scientific machine learning offer

a compelling alternative. Neural operators, especially
the Fourier Neural Operator (FNO), provide a framework
for learning mappings between function spaces, enabling
fast, resolution-invariant approximations to PDE solutions.
Once trained, these models produce predictions in a single
forward pass, bypassing iterative updates and allowing for
larger time steps without sacrificing accuracy. This study
explores the viability of applying neural operators to accel-
erate acoustic wave simulations in computer graphics appli-
cations, focusing on scenarios with reflections, boundary in-
teractions, and animated sound sources. The objective is to
assess whether neural operators can retain physical fidelity
while reducing computational burden, thereby facilitating
scalable acoustic simulation for graphics applications.

2. Related Works

2.1. Neural Operators and Operator Learning

Neural operators have emerged as a transformative ap-
proach for simulating complex physical systems. Unlike
traditional neural networks, which learn point-wise map-
pings between fixed-resolution inputs and outputs, neural
operators approximate mappings between entire function
spaces. This capability allows them to generalize across
discretizations and perform inference at unseen resolutions.
As emphasized by Azizzadenesheli et al. [1], neural oper-
ators overcome key limitations of conventional numerical
solvers, including their dependence on fine grids, lack of
differentiability, and inability to exploit observational data.
By learning efficient representations and operating in the
frequency domain, models like the FNO achieve orders-
of-magnitude speedups across a wide range of applica-
tions—from weather forecasting to inverse design—while
remaining physically consistent and scalable.

2.2. Neural Operators in Acoustic Simulation

In the context of acoustics, Middleton et al. [9] demon-
strated that FNOs can effectively simulate 2D linear acous-
tic wave propagation, including complex interactions such

1



as superposition, reflections, and diffraction. Compared to
FDTD baselines, FNOs were up to 25 times faster, while
maintaining high fidelity in both time and frequency do-
mains. Moreover, the network compressed 24.4 GB of
FDTD training data into just 15.5 MB of model weights,
showcasing its efficiency as both a predictor and a data com-
pressor.

Li et al. [6] extended these ideas to seismic modeling,
showing that FNOs can handle variable velocity fields and
complex geometries by learning the frequency-domain so-
lution to the Helmholtz equation. Their parallelized FNO
framework (PFNO) enabled scalable learning across mul-
tiple source positions and frequencies, retaining high ac-
curacy even under distributional shifts and noisy training
labels. These results indicate that operator-learning frame-
works can effectively decouple resolution from runtime, of-
fering substantial improvements over finite-difference and
finite-element methods.

2.3. Acoustic Simulation in Computer Animation

In previous studies about using neural operators in
acoustic simulation, both [9] and [6] simulate their dataset
in static environments. Specifically, Middleton et al. [9]
generated 4 types of static environment with different
boundary conditions. Li et al. [6] use OpenFWI dataset
which only contains static environment as well. In com-
puter animation, it’s often the case that the sound sources
in the scene are animated. Therefore, the datasets in pre-
vious work will not generalize in the computer animation
applications.

As pointed out by Wang et al. [12] and Xue et al. [14],
simulating animated sound source directly with traditional
FDTD solver will cause artifacts in the results. Specifically,
when the surface of the sound source moves from one cell to
another, the discrete cell jump can result in undesired pop-
ping sound in the audio. [12] solved this problem by intro-
ducing a layer of ghost cells around the boundaries and [14]
solved the problem by using a blending scheme to avoid dis-
crete cell movement. In this study, we adopted the Wave-
Blender algorithm from [14] to generate our training and
testing dataset.

3. Problem Statement

3.1. Governing Equation

We consider the 2D acoustic wave equation given by:

∂2p(x, y, t)

∂t2
= c2∇2p(x, y, t),

where p(x, y, t) denotes the acoustic pressure field parame-
terized by spatial coordinate (x, y) and time t, c is the wave
speed, and ∇2 is the Laplacian. A Neumann boundary con-

dition is imposed:
∂p

∂n
= g(t),

where g(t) is a time-dependent function defining the pres-
sure gradient at the boundaries. In practice, this is related to
the normal velocity of the vibrating sound source.

We aim to learn a discrete-time operator G that maps the
initial state and boundary condition to the pressure field at
a future time T :

p1···T = G(p0, v0···T−1),

where p1···T are the time sequenced pressure field from time
step 1 to T and v0···T−1 are the boundary conditions (sur-
face normal velocity) from time step 0 to T − 1.

3.2. Baseline Method

Fourier Neural Operator (FNO)

As previous studies used FNO to learn acoustic wave
function, we choose it as our baseline model.

The FNO approximates a global integral operator by pa-
rameterizing it in the frequency domain. At each layer, it
updates the state via:

uk+1(x) = σ(Wuk(x) + F−1 (R · F(uk))) (1)

where F and F−1 denote the Fourier and inverse Fourier
transforms, R is a learned complex-valued kernel in Fourier
space, and W is a learned point-wise linear transformation.
This architecture enables efficient modeling of non-local
spatial interactions and supports inputs of arbitrary resolu-
tion.

FDTD Numerical Solver

One of the main advantages of neural operators over tra-
ditional numerical methods is its high computational effi-
ciency. To evaluate this, we also compare our model with
the WaveBlender FDTD solver as a benchmark component
for real-world application. However, as we are using Wave-
Blender to generate ground-truth training and testing data,
we did not use it as a baseline for accuracy.

4. Dataset
To generate training and testing data for our models, we

simulate acoustic wave propagation using our implementa-
tion of the WaveBlender solver in Taichi. This solver nu-
merically integrates the 2D acoustic wave equation in a dis-
crete grid. The input of the solver is a function of boundary
conditions. The solver then solves the pressure field and ve-
locity field over time (Figure 1). Unlike the FDTD solver
implemented in [9], our solver does not enforce periodic or
perfect reflecting domain boundary conditions. Instead, we

2



used the perfectly matched layer (PML) [8] to simulate the
absorbing domain boundary.

We generated 9 different environments with random au-
dio source and obstacles moving in the scene. We also
generated the audio played by the sound source randomly
in different frequencies varying from 20Hz to 20kHz. The
simulation domain size of all the scenes are 1m× 1m.

We’ve used 8 out of 9 scenes for training and validation
and test all models on the 9th scene. We also split 20% of
the training dataset for validation and save the best model
on validation set to avoid overfitting. As each scene are ran-
domly generated, the testing dataset is completely unseen
to the models.

Figure 1. WaveBlender Solver

5. Methods

To approximate the solution operator of the 2D acoustic
wave equation, we implement and train three types of neural
operator architectures: U-FNO [5], CNO [5], and TFNO.
Each model is trained to map from the initial acoustic state
and time-dependent boundary condition to the pressure field
at a future time, effectively learning the evolution of the
wave equation.

U-FNO

U-FNO (U-Net Fourier Neural Operator) is a hybrid ar-
chitecture that enhances the expressive power of Fourier
Neural Operators by appending a U-Net encoder-decoder
pathway within each Fourier layer. This design is especially
effective for capturing both low-frequency global patterns
and high-frequency local features such as sharp wavefronts
or discontinuities. We adopt the U-FNO formulation intro-
duced by Wen et al. [13], originally designed for modeling
multiphase CO2 flow in porous media.

The U-FNO architecture (see Figure 2) consists of an
initial lifting layer P that projects input features to a high-
dimensional latent space, followed by a series of Fourier
and U-Fourier layers. Each U-Fourier layer augments the
standard Fourier layer with an additional U-Net block, en-
hancing its ability to capture multi-scale information. The

layer update is given by:

vk+1(x) = σ
(
F−1 (R · F(vk)) (x) + U(vk)(x) +W (vk(x))

)
,

where F and F−1 are the Fourier transform and its inverse,
R is a learnable spectral filter, U is a U-Net applied in the
spatial domain, W is a pointwise linear operator, and σ de-
notes a nonlinear activation function such as ReLU.

In our implementation, we define a 2D U-FNO model
using PyTorch by adapting the original architecture to op-
erate on purely spatial inputs. The model begins with a
lifting linear layer that projects input fields into a higher-
dimensional latent space. This is followed by a configurable
sequence of standard Fourier layers and U-Fourier layers,
where the number of each (denoted L and M , respectively)
is treated as a tunable hyperparameter. Each Fourier or U-
Fourier layer performs spectral convolution in the frequency
domain using a truncated set of Fourier modes, followed by
pointwise bias and nonlinear activation. The U-Fourier lay-
ers additionally incorporate a 2D U-Net encoder-decoder
path in the spatial domain, enabling localized refinement
and better representation of high-frequency features. Fi-
nally, a projection linear layer maps the output back to the
original target space.

Figure 2. U-FNO architecture adapted from [13]. The U-Fourier
layer (c) integrates Fourier spectral convolution with a U-Net
block to improve resolution of localized features.

CNO

The CNO replaces global spectral convolution with
learned local convolutions, modeling the operator through
spatial integral kernels:

uk+1(x) =

∫
Ω

κ(x− y)uk(y) dy + b(x),

where κ is a learnable kernel and b(x) is a bias term. This
formulation is implemented using convolutional layers, of-
fering computational simplicity and improved local feature
extraction. Although CNOs may not capture long-range de-
pendencies as effectively as FNOs, they are often easier to

3



Figure 3. Our Acoustic CNO Architecture

train and interpret. These properties made us believe that
CNO fits our application well as the acoustic wave problem
is local and does not depend on distance input.

As pointed out in the original FNO paper [7], the use
of convolution kernels makes the model no longer scale in-
variant. In other words, the kernel trained in one resolution
cannot be used for inference in another resolution. Raonic
et al.[10] proposed a solution to this problem by introduc-
ing the band limit to the input function. Specifically, CNO
assumes that the highest frequency component ω in the in-
put function does not exceed a certain threshold. This al-
lows the model to train on the discrete data set that satisfy
this condition and inference on any input with sample rate
higher than 2ω.

Figure 4. Basic Layers in CNO

With this band limit constraint, CNO differs from tra-
ditional CNN in a few ways. First, it’s important to avoid
aliasing when applying upsample and downsample layers.
In the original CNO paper, the authors apply a Sinc low pass
filter before downsample and after upsample layers [10].
In our implementation, we use average pooling layers for
downsample layers and bilinear interpolation for upsample
layers to achieve similar result. Another difference is non-
linear layers cannot be applied directly as it’ll introduce
aliasing as well. To mitigate this issue, all the non-linear
layers are applied in higher frequency and wrapped with a
upsample layer and a downsample layer. These layers are
shown in Figure 4.

Using these band limit layers, we built four types of
block for CNO following the implementation in [10] (Fig-
ure 5). The invariant block is the band limit equivalent of
the convolution layer with activation in regular CNN. Up-
sample and downsample blocks appends an upsample and

Figure 5. Building Blocks in CNO

downsample layer after an invariant block. Residual block
is the band limit equivalent of the residual block in ResNet
[3].

We use the aforementioned band limit blocks to build our
CNO model. Following [10], we designed our model as a
U-Net like fully convolutional neural network. The detail
architecture is shown in Figure 3.

TFNO

The tensorized Fourier neural operator (TFNO) is a vari-
ant of the FNO that is designed to be more lightweight and
efficient. Specifically, consider the Fourier convolution ker-
nel

R ∈ C
α× · · · × α︸ ︷︷ ︸

d times

×I×O×2d−1L

from (1), where d is the spatial dimension (in this case, d =
2), α is the number of modes per dimension, I is the number
of input channels, O is the number of output channels, and
L is the number of layers.

We can obtain a low-rank approximation of R via the
Tucker decomposition [11]:

R ≈ G×1 U
(1) · · · ×d U

(d) ×d+1 U
(I) ×d+2 U

(O) ×d+3 U
(L)

where

G ∈ CRL×RI×RO×R1×···×Rd ,

U(i) ∈ CRi×α, (i = 1, . . . , d)

U(I) ∈ CRI×I , U(O) ∈ CRO×O, U(L) ∈ CRL×L

are learned low-rank factor matrices to be learned. The mul-
tilinear ranks (R1, . . . , Rd, RI , RO, RL) are hyperparame-
ters that control the approximation accuracy and model ca-
pacity [4].

4



This factorization significantly reduces the number of
learnable parameters, leading to lower memory usage and
faster training (compared to the standard FNO architec-
ture), without compromising expressiveness. In some cases,
TFNO may also improve generalization by implicitly regu-
larizing the convolution weights [4].

Here, we implement a TFNO model for our
acoustic wave simulation task, using the Python
neuraloperators library.

6. Experiment and Results

Implementation and Training Details

As aforementioned, we model the acoustic propagation
problem by predicting T pressure field steps from the initial
pressure field and T boundary conditions. Using a small T
means the model needs to learn the mapping over a smaller
time step. This is often not a hard problem as the pressure
field change is also small over this time step. Using a small
T also means we need to call the kernel more frequently to
get the audio clip in the same length.

By contrast, using a large T would increase the model
size significantly and increase the training time. Addition-
ally, projecting larger input into the same latent space makes
it harder for the model to encode all the motion information
necessary for prediction. In our study, we choose T = 63
for all the models considering the balance between training
speed and model accuracy.

For the FNO and TFNO models, using the Neural Op-
erator library, we trained each model using the Adam opti-
mizer with a learning rate of 0.008. The TFNO model was
configured with a decomposition rank of 16 in both spatial
dimensions, enabling a lower-memory approximation of the
spectral weights.

For the CNO model, we used the Adam optimizer with a
learning rate of 0.001 and trained for 32 epochs. The CNO
architecture consists of 15 residual blocks, each built from
3× 3 convolutions with ReLU activations and skip connec-
tions to ensure stable training and preserve local structure.
We use average pooling and bilinear interpolation within in-
termediate layers for bandlimiting, and a final linear projec-
tion layer maps the latent features back to the output space.
ReLU nonlinearities are applied throughout the network.

The U-FNO architecture included 3 Fourier layers fol-
lowed by 3 U-Fourier layers, each using 24 retained Fourier
modes per spatial dimension. We used a 2-layer U-Net
block in each U-Fourier layer, along with ReLU activations
throughout. We used the Adam optimizer with learning rate
0.001, and trained for 50 epochs.

Model selection was also based on validation loss to en-
sure generalization.

Evaluation

To test the accuracy of all the models, we evaluate them
with MSE, L2, and H1 loss. In the case of acoustic simu-
lation, MSE measures the average per-pixel error which re-
flects the overall fidelity of the simulation. L2 loss measures
the sum of pressure field different over the entire domain,
which reflects the model’s ability to preserve total energy.
H1 loss takes the gradient of the predicted pressure field
into account which reflects the stability of the model.

Based on Table 1, the CNO model outperforms all other
neural operator variants in the acoustic simulation task.
This is theoretically justified by CNO’s use of localized
convolutional kernels and bandlimited filtering, which are
well-suited for modeling wave propagation where high-
frequency details and local interactions dominate. In con-
trast, the U-FNO, while less accurate than CNO, still signif-
icantly outperforms the FNO baseline by combining global
Fourier modeling with U-Net-based spatial refinement, al-
lowing it to better resolve multi-scale features. Meanwhile,
the TFNO shows only a modest improvement over FNO
in accuracy, which aligns with its design: TFNO leverages
tensor decomposition to compress the spectral weights, im-
proving computational efficiency but at the cost of reduced
expressiveness.

While all neural operator models outperform the FNO
baseline in accuracy (Table 1), their runtime efficiency
varies. Interestingly, the CNO achieves the fastest inference
speed, surpassing even the simpler FNO baseline, likely due
to its use of local convolutional operations. In contrast,
the U-FNO, despite its improved accuracy, incurs the high-
est computational cost, which can be attributed to its more
complex architecture that combines Fourier spectral convo-
lutions with U-Net encoder-decoder blocks. These results
suggest a trade-off between model complexity and infer-
ence efficiency, with CNO offering the best performance in
terms of accuracy and speed.

Figure 6. Error Evolutions of Neural-Operator Variants

Another important evaluation in our study is prediction
error evolution over time steps. As our models predict 63
steps at once, the accuracy may be different at different

5



Model L2 H1 MSE Speed (steps/second) Number of Parameters

FNO (baseline) 49.23 51.07 13.93 5349 19,272,640
U-FNO 24.77 25.14 2.98 1900 16,631,040
CNO 20.45 21.90 1.98 5359 8,885,440
TFNO 45.08 47.06 12.21 3092 958,828

Table 1. Comparison between Neural-Operator Variants

steps. We plot a mean absolute error curve to evaluate this
property. Figure 6 shows this plot for each of the four neural
operator models we tested.

Figure 7. FNO Inference Result (final time step)

We observe that the FNO model performs better at the
beginning. The error steadily increases before dipping in
the middle and plateauing. The TFNO model produces a
similar error evolution but slightly better, especially at the
middle time steps.

Plotting the inference result at the last time step (Fig-
ure 7), we see that the FNO model captures part of the
acoustic wave but generally yields a poor recovery. The
TFNO inference result (Figure A.1) is similar.

Figure 8. CNO Inference Result

On the other hand, Figure 6 suggests that the CNO model
tends to perform better at the beginning and near the end of
the sequence while producing worse results in the middle.
We also show this difference quantitatively in Figure 8. As
demonstrated in the plot, the simulation degrades at step 32
and recovers at step 55.

Meanwhile, the U-FNO model exhibits gradual error

accumulation, with performance degradation most pro-
nounced in the later steps. This trend reflects the increasing
difficulty of maintaining physical consistency in long-range
temporal extrapolation.

Figure 9. U-FNO inference result at the final time step. Left: pre-
dicted pressure; center: ground truth; right: absolute error.

At the same time, Figure 9 shows that U-FNO is able to
reproduce the overall structure of the wavefronts, including
major reflections and interference patterns. However, differ-
ences remain, especially near high-frequency edges, where
artifacts and attenuation can be observed.

As a result, our observation of the error evolution and
inference plots coheres with our theoretical intuition that
CNO is particularly effective (exceeding that of our FNO
variants) at capturing localized and high-frequency features
at the start and end of a wave sequence, but may struggle
with long-range dependencies due to its lack of explicit tem-
poral modeling.

Finally, we also consider the memory usage of each
model (i.e., number of parameters) in Table 1. The FNO
baseline contains the most parameters (over 19 million), fol-
lowed by the U-FNO and then the CNO, which is about half
the size as the baseline. The smallest model is the TFNO
(less than 1 million), which is about 20 times smaller than
the FNO baseline. These parameters align with the intuition
discussed in the Methods section.

Therefore, we are able to find that CNO balances mem-
ory, accuracy, and speed, allowing for efficient and reliable
acoustic wave simulation.

Iterative Sampling

The goal of this study is to identify a neural operator
model that can generate audio samples more efficiently than

6



the FDTD solver without sacrificing too much accuracy.
While we have tested a few models above, these were evalu-
ated only on audio samples of limited size (depth of 64 time
steps). We now describe an iterative sampling method to
generate the full audio sample given the velocity and alpha
fields but only the initial pressure field.

To do this, we choose one of the models trained above
and first generate the first 64 time steps of the sample nor-
mally, i.e., using the initial pressure field. We then use the
last predicted pressure field as the initial condition for gen-
erating the next 63 time steps, and so on, repeating until
we reach the end of the full audio sample. Concatenating
the predicted pressure fields for each iteration gives us an
estimate of the full audio sample.

To test the efficacy of this method, we use our best model
(i.e., CNO) to iteratively generate an estimate of our eval-
uation sample (n = 8757 time steps). We achieve a MSE
of 10.40, outperforming the MSEs of the FNO baseline and
TFNO models (Table 1).

Figure 10. Evolution of the mean absolute error of the iterative
CNO estimate over the full evaluation sample (n = 8757 time
steps).

Figure 10 shows the evolution of the resulting mean ab-
solute error over the full evaluation sample. Unlike the error
evolutions in Figure 6, we see an oscillatory pattern here,
likely because the iterative CNO estimate should be most
accurate for the pressures used as initial conditions, with
error going back up as it predicts the next 63 time steps.

Figure 11 shows an example of the CNO iterative esti-
mate compared to the ground truth for a fixed time step.
While the estimate sufficiently captures much of the ground
truth, it performs especially poorly in a region at the bottom
(marked as A in the prediction and B in the error). This arti-
fact could be especially prominent in the middle time steps,
which could explain the higher errors from Figure 10.

Figure 11. CNO iterative estimate at the middle time step (4441
out of 8757). The areas marked in red correspond to regions in the
predicted pressure field (A) and the absolute error (B) where the
estimate performed especially poorly.

As such, while we have shown that applying the iterative
sampling scheme to the CNO model can result in adequately
accurate estimates (albeit with some unwanted artifacts), it
is also important to evaluate the increase in efficiency com-
pared to the FDTD solver. On our NVidia Tesla T4 GPU,
the FDTD solver generates about 12 steps per second, while
we observed rates of 1,800 to 2,400 steps per second for the
CNO iterative method. Thus, this method speeds up the au-
dio sampling process by a factor of about 150 to 200, a sig-
nificant practical advantage compared to the FDTD solver.
However, we note that our implementation of the FDTD
solver is not fully optimized, which may contribute to the
observed performance gap. Future investigation should fo-
cus on more optimized solvers and consistent benchmarking
to more precisely quantify the efficiency gains of neural op-
erator methods. Nonetheless, neural operators, particularly
CNO, demonstrate significant potential for efficient audio
wave simulation over traditional numerical solvers.

7. Conclusion and Future Work

This study demonstrates that CNOs offer superior ac-
curacy over other neural operator architectures in simu-
lating acoustic wave propagation, while all tested neural
operators provide orders-of-magnitude speedup compared
to traditional FDTD solvers. These findings highlight the
promise of neural operator models for real-time, physics-
based sound synthesis in computer graphics applications.

Our current work is limited by the scope of the dataset,
which includes approximately 64,000 samples from only
eight scenes with simple geometric configurations of sim-
ple and sparsely positioned obstacles. Future work can ex-
pand the training dataset to include a wider range of en-
vironments, particularly those with multiple, dynamically
moving obstacles, more diverse object shapes and dynamic
boundary conditions, to improve generalization and robust-
ness. Additionally, as noted in our experiments, CNO ex-
hibits noticeable degradation in the middle of long-range
predictions. This issue could be addressed by incorporat-
ing time-sequenced models such as RNNs or Transformers,
which are better suited for long-horizon temporal model-

7



ing and enable autoregressive inference. Furthermore, these
include exploring recent advances like GNOT [2], which
demonstrate the potential of Transformer-based operator
networks in capturing complex spatio-temporal dynamics,
making them a promising direction for improving accuracy
and stability over longer time horizons.

Thus, while our study establishes the feasibility of neu-
ral operator-based methods for fast and accurate simulation,
further investigation is required to assess their performance
on more complex, real-world audio scenarios. In particu-
lar, evaluating time and memory efficiency over longer hori-
zons and larger spatial domains will be important for scaling
these models in practical graphics and audio pipelines.

8. Contributions & Acknowledgments

Fangjun Zhou generated the dataset with WaveBlender
and trained the FNO baseline. He also designed, imple-
mented, and trained the CNO architecture.

Ngoc Vo designed, implemented, and trained the U-FNO
architecture.

Kevin Liu trained the TFNO model and performed the
iterative sampling analysis.

References
[1] K. Azizzadenesheli, N. Kovachki, Z. Li, M. Liu-Schiaffini,

J. Kossaifi, and A. Anandkumar. Neural operators for ac-
celerating scientific simulations and design. arXiv preprint
arXiv:2309.15325, 2024.

[2] Z. Hao, Z. Wang, and H. Su. Gnot: A general neural
operator transformer for operator learning. arXiv preprint
arXiv:2302.14376, 2023.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition.

[4] J. Kossaifi, N. Kovachki, K. Azizzadenesheli, and A. Anand-
kumar. Multi-grid tensorized fourier neural operator for
high-resolution pdes, 2023.

[5] N. B. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhat-
tacharya, A. M. Stuart, and A. Anandkumar. Neural oper-
ator: Learning maps between function spaces with appli-
cations to pdes. Journal of Machine Learning Research,
23(241):1–97, 2022.

[6] B. Li, H. Wang, S. Feng, X. Yang, and Y. Lin. Solving seis-
mic wave equations on variable velocity models with fourier
neural operator. arXiv preprint arXiv:2209.12340, 2023.

[7] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhat-
tacharya, A. Stuart, and A. Anandkumar. Fourier neural
operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020.

[8] Q.-H. Liu and J. Tao. The perfectly matched layer for acous-
tic waves in absorptive media. 102(4):2072–2082.

[9] M. Middleton, D. T. Murphy, and L. Savioja. Modelling
of superposition in 2d linear acoustic wave problems using
fourier neural operator networks. Acta Acustica, 9:20, 2025.

[10] B. Raonić, R. Molinaro, T. De Ryck, T. Rohner, F. Bar-
tolucci, R. Alaifari, S. Mishra, and E. de Bézenac. Convo-
lutional neural operators for robust and accurate learning of
pdes. arXiv preprint arXiv:2302.01178, 2023.

[11] L. R. Tucker. Some mathematical notes on three-mode factor
analysis. Psychometrika, 31(3):279–311, 1966.

[12] J.-H. Wang, A. Qu, T. R. Langlois, and D. L. James. To-
ward wave-based sound synthesis for computer animation.
37(4):1–16.

[13] G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and
S. M. Benson. U-fno—an enhanced fourier neural operator-
based deep-learning model for multiphase flow. Journal of
Computational Physics, 469:111543, 2022.

[14] K. Xue, J.-H. Wang, T. Langlois, and D. James. Wave-
Blender: Practical sound-source animation in blended do-
mains. In SIGGRAPH Asia 2024 Conference Papers, pages
1–10. ACM.

A. Appendix

Figure A.1. TFNO Inference Result (final time step)

GitHub repository: https://github.com/fangjunzhou/acoustic-
no

Library Version

numpy 1.26.4
torch 2.6.0+cu126
neuralop 1.0.2
matplotlib 3.10.1
tqdm 4.67.1
seaborn 0.13.2
argparse 1.4.0
multiprocess 0.70.18

Table 2. Table of Python Libraries Used

8

https://github.com/fangjunzhou/acoustic-no
https://github.com/fangjunzhou/acoustic-no

