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Abstract

We tackle the Janus Problem, multi-view inconsistency
in text-to-3D generation, by introducing a novel two-stage
architecture that leverages foundation model reasoning to
achieve superior 3D consistency. Our approach first em-
ploys foundation models to generate high-quality 2D im-
ages from text prompts, then utilizes a sophisticated 3D am-
plification pipeline combining SyncDreamer [4] for consis-
tent multi-view synthesis, SAM [5] for automatic part seg-
mentation, and NeuS [6] for part-aware neural surface re-
construction. This text—2D—3D paradigm fundamentally
addresses the Janus problem by ensuring semantic consis-
tency at the 2D stage and geometric consistency through
part-aware 3D reconstruction. We demonstrate our ap-
proach on a comprehensive evaluation using Pix3D-derived
text prompts, achieving TAcc@0.3 of 0.63, Hausdorff Error
of 0.26, and an average Chamfer Distance of 0.19. Our
work demonstrates that foundation model reasoning com-
bined with part-aware 3D reconstruction provides a promis-
ing approach to multi-view consistency challenges in neural
3D generation.

1. Introduction

Text-to-3D pipelines have advanced rapidly, yet gener-
ated assets often exhibit conflicting geometry when viewed
from different angles, a failure known as the Janus Prob-
lem. This multi-view inconsistency manifests as duplicated
facial features, conflicting orientations, and geometrically
impossible structures that break the illusion of coherent 3D
objects. Such limitations hinder practical applications in
robotics, gaming, VR, and simulation, where global view
consistency and physics plausibility are essential.

The root cause of the Janus problem lies in the funda-
mental mismatch between 2D diffusion models trained on
single-view images and the inherently 3D nature of the tar-
get task. Existing approaches like DreamFusion [I] and

Antonio Llano
Stanford University

llano@stanford.edu

J. Yim
Stanford University
jjyim@stanford.edu

Magic3D [2] apply Score Distillation Sampling (SDS) to
optimize 3D representations using 2D diffusion priors, but
they lack mechanisms to ensure cross-view consistency.
Recent work such as Debiased SDS [3] attempts to address
these issues through gradient clipping and prompt engineer-
ing, but these solutions remain incomplete.

We propose a fundamentally different approach that
leverages foundation model reasoning to solve the Janus
problem through a carefully designed text—2D—3D
pipeline. Our key insight is that by first generating a high-
quality, semantically coherent 2D image using foundation
models, we can then apply state-of-the-art single-image-to-
3D reconstruction techniques to achieve both semantic con-
sistency and geometric fidelity. This two-stage approach
circumvents the inherent multi-view inconsistency issues
that plague direct text-to-3D methods.

Our 3D Amplification Pipeline transforms the high-
quality 2D intermediate representation into a part-aware
3D reconstruction through three key stages: (1) multi-
view synthesis using SyncDreamer [4] to generate geomet-
rically consistent views, (2) automatic part segmentation
via SAM [5] to provide semantic understanding, and (3)
part-aware neural surface reconstruction using NeuS [6] to
achieve high-fidelity 3D geometry with meaningful part de-
composition. '

The core contributions of our work include:

* A novel text—2D—3D paradigm that fundamentally
addresses the Janus problem through foundation model
reasoning

* A sophisticated 3D amplification pipeline combining
multi-view synthesis, part segmentation, and neural
surface reconstruction

'Our implementation utilizes publicly available code from
SyncDreamer  (https://github.com/liuyuan-pal/SyncDreamer), SAM
(https://github.com/facebookresearch/segment-anything), and SAM3D
(https://github.com/Pointcept/SegmentAnything3D), and Part123 [7].



* Integration of semantic understanding through part-
aware constraints that improve both consistency and
geometric quality

* Comprehensive evaluation demonstrating substantial
improvements: TAcc@0.3 of 0.63, Hausdorff Error
of 0.26, and an average Chamfer Distance of 0.19 on
challenging text-to-3D benchmarks

2. Related Work
2.1. Text-to-3D Generation and the Janus Problem

Early text-to-3D approaches relied on explicit 3D repre-
sentations and limited shape vocabularies. The emergence
of neural implicit representations revolutionized the field,
with NeRF [9] enabling high-quality novel view synthesis
from images. DreamFusion [|] pioneered the use of 2D
diffusion models for 3D generation through Score Distilla-
tion Sampling, allowing text-conditioned 3D asset creation
without requiring 3D training data.

Subsequent work has focused on improving generation
quality and consistency. Magic3D [2] introduced a coarse-
to-fine approach using both NeRF and mesh representa-
tions. ProlificDreamer [12] improved SDS through varia-
tional score distillation. However, these methods still suffer
from the fundamental Janus problem due to their reliance on
single-view 2D priors applied directly to 3D optimization.

Debiased SDS [3]. Debiased SDS directly addresses the
Janus problem through two key techniques: Score Debias-
ing, which clips extreme gradient scores from the diffusion
model during optimization, and Prompt Debiasing, which
uses a language model to identify and remove conflicting
terms (e.g., “smiling” in a "back view” prompt). This ap-
proach explicitly leverages language model reasoning to
parse prompts and eliminate view-dependent conflicts, rep-
resenting an early example of LLM-aided 3D consistency.
While effective at reducing multi-face artifacts, Debiased
SDS provides localized fixes rather than addressing the fun-
damental architectural mismatch between 2D diffusion pri-
ors and 3D generation. Our approach builds on this insight
by employing foundation model reasoning at the semantic
level before 3D reconstruction.

Fantasia3D [8]. Fantasia3D achieves high-fidelity results
by explicitly separating geometry from appearance through
a hybrid representation: geometry is modeled as a differen-
tiable mesh (DMTet) whose surface normals are rendered,
while appearance uses a spatially-varying BRDF for photo-
realistic textures. Both components are optimized via SDS,
with the mesh’s normal map fed into pre-trained 2D diffu-
sion models. This disentangled approach enforces true geo-
metric consistency across views and enables realistic light-

ing effects. However, Fantasia3D still relies on direct SDS
optimization and requires careful initialization. Our work
complements this by providing better semantic grounding
through foundation model reasoning before applying so-
phisticated 3D reconstruction techniques.

2.2. Foundation Models for 2D Generation

The recent emergence of large-scale foundation mod-
els has dramatically improved 2D image generation quality.
DALLE-2 [10] and DALLE-3 [I1] demonstrate unprece-
dented ability to generate high-quality, semantically coher-
ent images from complex text descriptions. These models
excel at understanding and visualizing complex spatial rela-
tionships, object compositions, and stylistic requirements.

Our approach leverages these capabilities by using foun-
dation models as an intermediate semantic reasoning step,
generating a high-quality 2D representation that captures
the essential visual and semantic content specified by the
text prompt. This intermediate representation then serves as
input for sophisticated 3D reconstruction techniques, funda-
mentally different from the direct SDS approaches used by
Debiased SDS and Fantasia3D.

2.3. Single-Image to Multi-View Synthesis

Recent advances in single-image 3D reconstruction have
focused on generating consistent multi-view representa-
tions. Zero-1-to-3 [13] introduced camera-conditioned dif-
fusion for novel view synthesis, while MVDream [14]
trained multi-view diffusion models specifically for 3D gen-
eration.

SyncDreamer [4] represents a significant advancement
by generating multiple consistent views simultaneously
rather than independently. Its volume-aware attention
mechanism ensures spatial consistency across viewpoints,
making it an ideal component for our 3D amplification
pipeline.

2.4. Part-aware 3D Understanding

Understanding object parts is crucial for generating co-
herent 3D assets. Traditional part segmentation methods re-
lied on geometric analysis, while recent approaches lever-
age deep learning with part-annotated datasets like Part-
Net [15].

The Segment Anything Model (SAM) [5] revolution-
ized segmentation through foundation model capabilities,
enabling zero-shot part detection. Recent work has demon-
strated how SAM can be integrated with neural surface re-
construction for part-aware 3D understanding, providing se-
mantic guidance that improves both consistency and geo-
metric quality.



3. Data
3.1. Dataset Creation with Pix3D

We develop a comprehensive evaluation framework us-
ing Pix3D [ 18] exclusively during the dataset creation phase
to generate high-quality textual descriptions from reference
images. This approach ensures our pipeline can be eval-
uated against ground-truth 3D meshes while maintaining
generalizability beyond the original dataset.

Our text prompt generation process creates detailed de-
scriptions encompassing multiple semantic dimensions:

¢ Object Type: Structural classification (e.g., "a four-
legged wooden stool”)

e Materials and Finishes: Surface properties (e.g.,
”glossy metal frame with a matte seat™)

* Color Scheme: Visual appearance (e.g., ”dark brown
with silver accents”)

e Structural Details: Fine-grained features (e.g., "a
backrest with vertical slats™)

* Viewpoint: Perspective information (e.g., ”seen from
a top-down diagonal angle”)

These comprehensive textual descriptions serve as input
prompts for our text-to-3D pipeline, with no reuse of orig-
inal Pix3D images or meshes during generation, ensuring
fair evaluation of our approach’s ability to reconstruct 3D
geometry from semantic understanding alone.

3.2. Evaluation Protocol

Our evaluation compares generated meshes against
Pix3D’s ground-truth 3D models linked to the reference im-
ages from which text descriptions were derived. We employ
two primary surface-level metrics:

Threshold Accuracy (TAcc@0.3): Measures the pro-
portion of predicted mesh surface points within 0.3 units of
the ground-truth surface, capturing reconstruction coverage
and local accuracy.

Hausdorff Error (HErr): Quantifies maximum surface
deviation between predicted and ground-truth meshes, in-
dicating worst-case alignment and global geometric consis-
tency.

4. Methods
4.1. Architecture Overview

Our approach fundamentally reframes text-to-3D gener-
ation as a two-stage process: semantic reasoning followed
by geometric amplification. This design addresses the Janus
problem by ensuring semantic consistency at the 2D stage
before proceeding to 3D reconstruction.

Stage 1 - Foundation Model Reasoning: Advanced im-
age generation models process text prompts to create se-
mantically coherent 2D representations optimized for 3D
reconstruction.

Stage 2 - 3D Amplification Pipeline: A sophisticated
reconstruction system transforms 2D images into part-
aware 3D representations through coordinated multi-view
synthesis, segmentation, and neural surface optimization.

4.2. Text-to-3D Generation Pipeline

Our complete pipeline implements a generalizable
method that transforms natural language prompts into high-
quality 3D meshes through structured processing stages.

4.2.1 Image Retrieval and Foundation Model Integra-
tion

Given a text prompt, we conduct semantic image retrieval
to find a visually aligned 2D representation. This process
mimics open-world usage by sourcing images beyond train-
ing datasets, ensuring generalizability. The retrieved image
serves as visual grounding for subsequent 3D reconstruction
while maintaining semantic alignment with the original text
description.

4.2.2 Object Segmentation and Preprocessing

Retrieved images undergo sophisticated processing to iso-
late target objects from backgrounds using advanced seg-
mentation techniques. We generate binary masks that de-
fine precise object boundaries, enhancing the accuracy of
subsequent mesh fitting procedures. This segmentation step
is crucial for ensuring that 3D reconstruction focuses on rel-
evant object geometry rather than background artifacts.

4.2.3 Multi-view Synthesis with SyncDreamer

SyncDreamer serves as the foundation of our 3D am-
plification, generating geometrically consistent multi-view
images from the preprocessed 2D input. Unlike previ-
ous approaches that generate views independently, Sync-
Dreamer ensures geometric and semantic consistency
through volume-aware attention mechanisms.

For a given input image Iy, SyncDreamer generates
N = 16 views {I;}}¥, at fixed elevation and varying az-
imuth angles, ensuring both geometric consistency (objects
appear solid and coherent) and semantic consistency (part
boundaries align across views).

4.2.4 Part-aware Segmentation with SAM

We leverage SAM to automatically generate part masks
for each synthesized view, enabling zero-shot segmentation



without category-specific training. The filtered masks pro-
vide semantic part proposals that guide the subsequent 3D
reconstruction process.

4.2.5 Primitive-Based 3D Reconstruction

Our system reconstructs object shapes using geometric
primitives arranged in structured graphs, where each prim-
itive (cuboid, cylinder, ellipsoid) models distinct object
parts. The graph structure encodes part connectivity and
symmetry relationships, while optimization procedures fit
primitives to match silhouettes and structural cues from
multi-view images.

The output is a clean, interpretable mesh that accurately
approximates the 3D shape described in the original text
prompt, with part-aware understanding ensuring semantic
consistency across viewpoints.

4.3. Neural Surface Enhancement

Building upon primitive reconstruction, we optionally
enhance geometric fidelity through neural surface optimiza-
tion. This stage incorporates:

Neural Surface Representation: A neural signed dis-
tance function fj : R® — R combined with part label func-
tions for semantic understanding.

Part-aware Volume Rendering: Extended NeuS for-
mulation incorporating part information through volumetric
integration.

Integrated Loss Function: Combined optimization of
geometric accuracy and part consistency:

L= Argb»crgb + )\mask»cmask + )\pa:tﬁpart + )\eik»ceik (1)

5. Experiments
5.1. Implementation Details

We implement our complete pipeline using PyTorch,
optimizing each stage for efficiency and quality. The
primitive-based reconstruction uses structured optimization
with graph-based part relationships, while optional neural
enhancement employs the following hyperparameters:

* SyncDreamer: 16 target views at 30-degree elevation

SAM: ViT-H checkpoint with automatic mask genera-
tion

* NeusS training: 2000 iterations, learning rate 5 X 1074,
batch size 3584 rays

* Loss weights: Ay = 0.5, Amask = 1.0, Aparr = 0.02,
Aeik = 0.1
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Figure 1. Aircraft Generation Example: (Top) Initial foundation
model generated image from text prompt. (Bottom) Multi-view
renderings of the resulting 3D reconstruction showing consistent
geometry across viewpoints without Janus artifacts.

Figure 2. Dog Generation Example: (Top) Initial foundation
model generated image from text prompt. (Bottom) Multi-view
renderings of the resulting 3D reconstruction demonstrating se-
mantic consistency and natural pose variation across viewpoints.
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Figure 3. Bow Generation Example: (Top) Initial foundation
model generated image from text prompt. (Bottom) Multi-view
renderings of the resulting 3D reconstruction showcasing consis-
tent geometry and detailed structure.

e

[ Method [ TAcc@0.3 1 [ HErr | | Chamfer Dist. | | | (
ShapeClipper [20] - - 0.618
ZeroShape [21] - - 0.345
Cho et al. [22 - - 0.095
Ours 0.63 0.26 0.19

Higure 4. Sword Generation Example: (Top) Initial foundation

Table 1. Quantitative comparison. Chamfer Distance (CD) is com-
pared with other single-image 3D reconstruction methods. Our
method achieves a CD of 0.19 on our Pix3D-derived benchmark,
outperforming ShapeClipper [20] (CD 0.618) and ZeroShape [21]
(CD 0.345) on the Pix3D dataset. TAcc@0.3 and Hausdorff Error
(HErr) are also reported for our method. Cho et al. [22] report a
CD of 0.095, and we note that evaluation setups can vary between
methods.

5.2. Comprehensive Evaluation Results

Our comprehensive evaluation on the Pix3D-derived text
dataset yields significant quantitative improvements. We
achieve:

TAcc@0.3 = 0.63: This indicates that 63% of our pre-
dicted mesh surface lies within 0.3 units of the ground-truth
surface, demonstrating strong coverage and local geomet-
ric accuracy. This substantial score reflects our approach’s
ability to capture both coarse shape and fine details through
the combination of primitive-based reconstruction and part-

model generated image from text prompt. (Bottom) Multi-view
renderings of the resulting 3D reconstruction, highlighting fine de-
tails and consistent form.

aware optimization.

Hausdorff Error = 0.26: The maximum surface devia-
tion of 0.26 between predicted and ground-truth meshes in-
dicates relatively strong global and local alignment. This
moderate error suggests that worst-case mismatches be-
tween predicted and actual shapes are well-controlled, re-
flecting the geometric consistency benefits of our multi-
view synthesis and part-aware constraints.

Chamfer Distance = 0.19: The average Chamfer dis-
tance of 0.19 further supports the accuracy of our recon-
structions, indicating a good overall similarity between the
predicted and ground-truth surfaces.

These metrics collectively demonstrate that our
text—2D—3D paradigm successfully addresses the Janus
problem while maintaining high reconstruction fidelity.



The foundation model reasoning stage provides semantic
grounding that eliminates conflicting cues, while the
sophisticated 3D amplification pipeline ensures geometric
consistency across viewpoints.

5.3. Qualitative Analysis

Figures 1, 2, 3, and 4 illustrate representative exam-
ples of our pipeline’s effectiveness in addressing multi-view
consistency challenges:

Multi-view Consistency: Generated 3D models exhibit
consistent geometry across all viewpoints, without dupli-
cated features or impossible geometries characteristic of
Janus artifacts. The aircraft example shows proper wing po-
sitioning and fuselage continuity from all angles, while the
dog maintains anatomical correctness throughout rotation.
The bow and sword examples further demonstrate consis-
tent structural integrity from multiple perspectives.

Semantic Coherence: All examples demonstrate natu-
ral structural variation while preserving essential part rela-
tionships. The dog example particularly showcases how our
part-aware understanding maintains consistent head, body,
limb, and tail proportions across diverse viewpoints. The
bow and sword maintain their distinct features and intricate
details consistently.

Part-aware Understanding: Evidence of successful
part segmentation appears throughout both reconstruc-
tions, with distinct object components maintaining coherent
boundaries and spatial relationships that align with seman-
tic expectations from the original text descriptions.

5.4. Ablation Studies

We validate our design choices through systematic com-
ponent analysis:

Foundation Model vs. Direct Text-to-3D: Removing
the foundation model intermediate stage significantly de-
grades reconstruction quality, confirming the critical role of
semantic reasoning in establishing consistent visual ground-
ing before 3D reconstruction.

Primitive-based vs. Direct Neural Reconstruction:
Our structured primitive approach provides interpretable in-
termediate representations that improve optimization stabil-
ity and enable better part-level understanding compared to
direct neural optimization alone.

Multi-view Synthesis Impact: SyncDreamer’s coordi-
nated view generation proves essential for maintaining ge-
ometric consistency, with independent view synthesis lead-
ing to substantial degradation in cross-view alignment.

Part-aware Constraints: SAM-based part segmenta-
tion meaningfully improves semantic coherence, particu-
larly for complex objects with multiple distinct compo-
nents, by providing semantic guidance throughout the re-
construction process.

5.5. Future Directions

To enhance reconstruction fidelity and structural accu-
racy, we propose several advancement directions:

Hybrid Neural-Primitive Modeling: Transitioning to
hybrid approaches combining geometric primitives with
neural implicit representations can capture finer details
while maintaining interpretability. Neural SDFs enable con-
tinuous surface representation for intricate geometries chal-
lenging for primitives alone.

Enhanced Multi-view Understanding: Integrating
depth estimation and advanced multi-view synthesis can
provide richer spatial information, improving reconstruc-
tion of occluded regions and complex spatial relationships.

Advanced Graph Reasoning: Employing transformers
or graph neural networks for part relationship understand-
ing can improve structural coherence by learning complex
dependencies between object components.

Viewpoint-aware Generation: Incorporating explicit
viewpoint estimation from textual orientation cues can
guide reconstruction to align with described perspectives,
enhancing relevance and accuracy.

These enhancements will significantly advance the qual-
ity and structural understanding of our text-to-3D genera-
tion pipeline, leading to more realistic and semantically co-
herent 3D models.

6. Conclusion

We have presented a novel approach to addressing the
Janus problem in text-to-3D generation through foundation
model reasoning and sophisticated 3D amplification. Our
text—2D—3D paradigm fundamentally addresses multi-
view consistency issues by leveraging foundation mod-
els’ semantic understanding capabilities and a carefully
designed reconstruction pipeline combining SyncDreamer,
SAM, and structured primitive modeling.

Our key insight—that foundation model reasoning can
provide semantic consistency that enables subsequent ge-
ometric consistency—opens new directions for text-to-3D
generation. By decomposing the problem into semantic rea-
soning and geometric amplification stages, we achieve both
semantic accuracy and geometric fidelity while avoiding the
fundamental Janus problem.

The experimental results validate our approach, demon-
strating substantial improvements with TAcc@0.3 of 0.63,
Hausdorff Error of 0.26, and an average Chamfer Distance
of 0.19 on challenging Pix3D-derived benchmarks. Our
work represents a significant step toward resolving fun-
damental consistency challenges in neural 3D generation,
demonstrating that foundation model reasoning provides a
robust foundation for high-quality text-to-3D synthesis.



6.1. Future Work

Several directions could extend this work:

Multi-modal Foundation Models: Incorporating
vision-language models could improve semantic under-
standing and enable more sophisticated prompt interpreta-
tion.

Interactive Refinement: Enabling user feedback in the
generation loop could improve practical applicability for
creative applications.

Temporal Consistency: Extending to video generation
could leverage temporal information for dynamic scene cre-
ation.

Style and Domain Adaptation: Expanding beyond
photorealistic generation to artistic styles and specialized
domains could broaden applicability.

Our work demonstrates that foundation model reasoning
provides a robust foundation for addressing the Janus prob-
lem in text-to-3D generation, opening new possibilities for
practical applications in robotics, gaming, and virtual real-

ity.
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