
Why Are CNNs The Model of Choice for Simulated Robotic Picking?

Josh Citron
Stanford University

450 Jane Stanford Way, CA
jcitron@stanford.edu

Doug Fulop
Stanford University

450 Jane Stanford Way, CA
fulop@stanford.edu

Olivia Taylor
Stanford University

450 Jane Stanford Way, CA
otaylor@stanford.edu

Abstract

Picking tasks are a staple of robotic task demonstra-
tions, whether that be with dexterous hands or parallel-jaw
grippers. We observed a variety of recent robotics simula-
tion papers including MuJoCo Playground [11] and Man-
iskill3 [7] both implemented simple CNN architectures as
the vision backbone for the task, even with state of the art
models slowly taking the place of vanilla-CNNs in most
other domains - and despite the marketing hype of robotics
foundation models. To this end, we investigate the usage
of CNN architectures for picking tasks by evaluating the
performance of a simple CNN architecture against 5 more
complex models: ResNets, ViTs, DINOv1, DINOv2, Depth-
Anythingv2, and Theia. We find that simple CNNs with ran-
domly initialized weights outperform other model architec-
tures, achieving the highest reward across both simulated
environments, with a fraction of the training time (at least
21x faster in our experiments).

1. Introduction
Robots promise to revolutionize physical labor and ac-

celerate the economy, yet their real world applications are
restricted to highly constrained tasks. Solving a task re-
quires engineers to assemble physical hardware to make the
task solvable by a particular robotic device (e.g. a set of
cameras, robotic arms, mounts for components, etc.) then
to carefully write a program to solve the particular task (pri-
marily using traditional computer vision and robotics con-
trol techniques). Pixels to action control promises to enable
robots to adapt to new tasks and change the paradigm from
task engineering to task training. In this paper we explore
the opportunity of training pixels to action policies that help
robots solve tasks in simulation.

While robots can use a variety of sensors to understand
the world, such as LiDAR (Light Detection And Ranging)
scanners that generate point clouds and RGB-D depth cam-
eras that produce an RGB image as well as a proceed depth
map, many robot reinforcement-learning experiments and

papers use standard RGB images captured from one or mul-
tiple cameras. End-to-end pixels-to-actions frameworks are
especially desirable as they allow for lower cost imaging
sensors to be deployed in the real-world and researchers
hope the policies that are learned can handle the complexity
of the real world.

The ability to train a robot to pick up an item remains
a valuable task for industrial applications as well as block-
ing capability for robots to enter new environments such
as the home and healthcare environments. As real-world
experimentation is expensive due to hardware costs, chal-
lenges with resetting the environment to a consistent con-
figuration, and an inability to scale environments to par-
allelize learning, sim-to-real transfer learning proposes a
solution of leveraging high-speed simulation environments
with physics engines and rendering capabilities.

Compounding a significant challenge in the pixels-to-
action training scheme of the cost associated with collect-
ing accurate data (both in simulation and in the real-world),
many successful demonstrations are required to train both
the vision backbone of a policy as well as the policy it-
self. When less data is available, it is common to use a
lightweight vision model end-to-end, or a pretrained vision
encoder that is finetuned. To this end, we want to investi-
gate these two approaches: using a lightweight vision en-
coder and training end-to-end versus finetuning an existing
state of the art model.

In this work, we use MuJoCo Playground [11] and Man-
iskill3 [7], two high-speed parallelized robotics simulation
frameworks that allows for fast GPU training on various
robotic manipulation tasks. We specifically investigate five
models as the visual backbone for picking and pushing
tasks: CNN, ViT, ResNet, DINO, and Depth-Anything-V2.
From this investigation, we found that simple CNNs outper-
form even state of the art models, training faster and achiev-
ing higher average reward.

Through this exploration we hope to further the goal of
training robotics policies that can transfer to the real world.

1



2. Related Work

2.1. Vision in Robotics

Lightweight models such as the canonical deep CNN
presented in [4] have been used to achieve impressive per-
formance on both simulated and real-world tasks [11]. Such
models have the advantage of having relatively few param-
eters, and thus can be trained end-to-end.

More complicated models have also been shown to
work well when data is available and training time is
not a concern. Specifically, pixels-to-action robotics tasks
have proven to be achievable zero-shot through Visual-
Language-Action (VLA) models where multi-modal Large
Language Models are fine-tuned on robotics demonstrations
data to accept camera images and robot joint states as in-
put and outputs action sequences. NORA [3] is a new
open-weight VLA model that may have a sufficiently small
memory footprint for inference on a consumer GPU such
as the Nvidia 4090 in our gaming PC. The primary advan-
tage of a VLA is that they can expand to arbitrarily com-
plex sequence of tasks during test time that are instructed
by natural language, rather than hand-crafted reward mod-
els and long simulation runs in task-specific simulation en-
vironments. However the fine-tuning process to adapt an
open-weight model to a new robot form factor is unclear
in computational cost, as the original VLA was pre-trained
on over 4,000 H100 hours and the authors did not share
the compute resources required to fine-tune for one robotics
hardware platform.

Recent work such as Theia [6] has explored a mixture of
experts combination of different off the shelf vision models
into one foundation model specific to robotics. Specifically,
Theia trains an encoder and backbone that can map RGB
camera imagery to a latent space that can then be accurately
decoded into an estimate of the outputs produced by various
CLIP, SAM, DINOv2, Depth-Anything, and ViT models, at
a fraction of the cost of computing each model individually.

2.2. Simulation Frameworks

To enable easy evaluation of robot policies without set-
ting up real-world scenes, simulation environments have
been developed. Recently, MuJoCo Playground [11] has
allowed single GPU training for robot policies in MuJoCo.
MuJoCo Playground also offers select environments with
vision as an input to the policy using Madrona batch ren-
dering [5]. While the vision environment is accessible, it is
difficult to import pretrained weights into the Brax frame-
work which uses Jax instead of Pytorch.

Alternative PyTorch-based environments such as Man-
iskill3 [7] are compatible with a wide-variety of well-tested
model architectures with pre-trained weights, with similar
training performance on a single GPU.

Figure 1. Maniskill PushCube Environment

3. Data

For this project we used two robot simulation environ-
ments: MuJoCo Playground and Maniskill3. Both simu-
lation environments accept XML-based scene descriptions
that include visual and dynamics models for robot arm,
specifications for virtual cameras, the objects for the robot
to interact with (e.g. tables and blocks), and visual markers
for the task goal. The environments simulate the dynamics
of the robot arm and other objects in the scene, and provide
simulated virtual camera feeds in the form of RGB images.
The simulated RGB camera images were rescaled from 128
height x 128 width by 3 channels to 224 height x 224 width
by 3 channels to match the expected inputs of existing pre-
trained models. Pixel values were normalized within the
range 0 to 1 for all models except Theia [6] which provides
its own normalization method.

In a block pushing task in Maniskill3 the table includes
a bullseye graphic that marks the target block position. See
Figure 1 for a rendered view of the environment as well a
simulated camera feed in the top right corner of the image.
A block picking task in MuJoCo Playground describes a
scene with a table, a strip of bright colored tape, and a block
that is placed on top of the tape. A similar block picking
task in Maniskill identifies the target picking pose with a
floating green dot.

Both environments are wrapped as an OpenAI Gym [1]
environment that waits for a policy to provide an action for
the current environment state for which the gym environ-
ment returns the next state. Both simulation frameworks are
able to simultaneously render multiple, domain-randomized
environments to enable policies to learn from multiple roll-
outs each step of policy iteration. In our experiments we
used between 64 and 256 simultaneous environments based
on GPU VRAM limitations.



The final results in this paper were generated in approx-
imately 20 hours of g6e.2xlarge instance time on Amazon
Web Services which includes an Nvidia 48GB L40S GPU.
Previous iterations of our experiments ran for over 50 hours
on these GPUs as we rolled out several policies for 1 mil-
lion steps to understand their robustness to over-fitting dur-
ing training as well as providing larger models sufficient
training time.

In MuJoCo Playground, we use the PandaPickCube-
Cartesian environment, which can be seen in Figure 2. The
goal of the task is to locate the red cube and lift it above a
certain height.

Figure 2. PandaPickCube environment in MuJoCo Playground.

4. Methods
We explored the baseline CNN and five alternative model

architectures across the two simulation environments which
we initially defined in Section 3 and further describe in Sec-
tion 5. These alternative models scale in complexity from
ResNets through to the robotics foundation model Theia.
Across both simulation environments we maintain the same
PPO training policy. Within the Maniskill environment we
train a 2-linear layer with ReLu activation for each of the
actors and critic. For consistency the models are all pro-
vided the same format of simulated RGB camera images,
and both the actor and critic use the same model.

4.1. Convolutional Neural Networks (CNNs)

We utilized CNNs as a baseline to benchmark the our
other models against, as CNNs are the primary backbone
for nearly all vision-based systems. CNNs generally per-
form well given their built-in locality and translation invari-
ance. However, CNNs with ImageNet pretraining struggle
to generalize to robotic simulations [2]. Additionally, un-
usual viewpoints or highly textured environments not seen

in training can cause CNNs to underperform and have poor
feature extraction unless retrained, thus removing the ad-
vantage of CNN pretrained weights. Additionally, heavy
CNNs can be too slow on low-power hardware systems
without pruning or quantization.

In our experiments, we used two different variations of
the same NatureCNN [4] in MuJoCo Playground and Man-
iskill. Neither baseline model used pretrained weights. We
hypothesized that the relative simplicity of CNNs led to
strong performance.

4.2. ResNet

Although CNNs generally perform well, they can strug-
gle to learn complex tasks as their size increases. This can
partially be attributed to vanishing gradients and loss of
context of earlier inputs, a problem ResNets were invented
to solve. ResNet is a specific CNN architecture that uti-
lizes skip connections to mitigate vanishing gradients and
enable deeper networks. By learning residual functions in-
stead of direct mappings, ResNets are often able to achieve
better feature representation and generalization when com-
pared to plain CNNs of dimilar depth. ResNets pretrained
on ImageNet allow for rapid transfer learning to new do-
mains, thus yielding strong performance even with limted
robotic data. Even without pretraining, the residual con-
nections help ResNets train end to end and converge more
quickly.

In MuJoCo Playground, we tested training an end-to-end
ResNet with an architecture consisting of:

1. Convolutional stem:
• Conv2D(16, 7×7, stride=2)

• Layer normalization
• ReLU activation
• MaxPool(3×3, stride=2)

2. Two residual blocks:
• Block 1: 16 channels, stride=2
• Block 2: 32 channels, stride=2
• Each block contains:

– Two 3×3 convolutions with layer normaliza-
tion

– Skip connection with 1×1 projection when
needed

– ReLU activations
3. Task-specific head:

• Global average pooling
• Single-layer MLP (64 units)
• Linear output layer

The architecture uses aggressive downsampling (total
stride=16) and minimal channels to maintain real-time per-
formance. Layer normalization is used throughout instead
of batch normalization for RL stability. Channel normaliza-
tion is applied to the input.



4.3. Vision Transformers (ViTs)

ViTs have demonstrated the ability to outperform CNNs
on classification and segmentation benchmarks, but still re-
main less common in robotic applications. Specifically,
ViTs have seen rapid adoption in academic robotic labs over
the past few years, but the large amount of computation re-
quired to compute attention limits the ability of ViTs to run
on embedded platforms. However, ViTs have the advan-
tage of solving the CNN’s limited receptive field by allow-
ing each patch to attend to every other patch, thus solving
long-range dependencies. ViTs are often used in simula-
tion or offline learning, then distilled to lighter CNNs for
on-robot inference, as even smaller version of ViTs are still
slower than optimized CNNs as we discovered.

ViTs generally require sigificant pre-training in order to
perform well, even more than CNNs. As a result, we wanted
to test the performance of a small ViT on a robotic manipu-
lation task.

We developed a custom ViT model in Jax which is in-
tentionally lightweight for real-time robotics control. The
network consists of:

1. Hybrid convolutional stem:
• Conv2D(32, 7×7, stride=4)

• Conv2D(32, 3×3, stride=2)

• GELU activation
2. Minimal transformer:

• Single transformer block
• Single attention head (dim=32)
• MLP hidden dimension = 64
• Pre-norm architecture (LayerNorm)
• No dropout

3. Task-specific head:
• Global average pooling
• Single-layer MLP (64 units)
• Linear output layer

The architecture uses large patch sizes (effectively created
by the conv stem’s aggressive downsampling) and minimal
layers to maintain real-time performance while still cap-
turing spatial relationships through self-attention. Channel
normalization is applied to the input for training stability.

4.4. DINO

DINO is a self-supervised distillation architecture that
allows for large-scale pretraining without labels. While
DINO is widely used in academic labs, it has yet to find
widespread use in production robots end-to-end. However,
DINO has found use in offline dataset preparation in appli-
cations such as semantic clustering and pseudo-label gener-
ation [8]. Its self-supervised architecture allows for train-
ing on millions of unlabeled frames to result in semanti-
cally meaningful features as well as ones which might not

be captured in labeled data. Generally, either ResNets or
ViTs have been used as a backbone for DINO. Training
from scratch on ViT can require long training times and
be computationally expensive, but models with pretrained
weights can be used for transfer learning and fine-tuning.

Given DINO’s limited use in robotics, we wanted to test
various transfer learning methods to see if it could be viably
used. We trained a variety of policies using DINO. In addi-
tion to a trainable policy, we tested a frozen DINO encoder,
an unfrozen DINO encoder, and a DINO encoder with the
final 3 layers unfrozen.

4.5. Depth-AnythingV2

Depth-AnythingV2 [10] is a monocular depth estimation
model that builds on the original Depth-Anything model
[9]. Both models make use of a teacher and student model,
with the teacher model trained on labeled data, which pre-
dicts depths for unlabeled data that the student then uses in
combination with the labeled data to learn. These models
use an encoder-decoder structure, with the encoder taking
the form of DINOv2 with a DPT decoder architecture. The
simulated depth image is fed as an input into the Critic and
Actor in our Maniskill3 PPO agent.

4.6. Theia

Theia [6] is a recent work that distills knowledge from
across different off-the-shelf vision models such as ViTs,
Depth-Anything v2, DINOv2, SAM, and CLIP. Model dis-
tillation can be formulated as training on a distillation objec-
tive that encourages matching between ground truth repre-
sentations and predicted representations. Theia specifically
distills the spatial tokens and not the CLS token, training
a set of feature translators which are then used to produce
a latent representation during inference, then decoded for
a variety of outputs. We experiment with using the latents
directly as well as concatenating the decoded simulated out-
puts of a ViT, Depth-Anthing v2, and CLIP as inputs to our
critic and actor in our Maniskill3 agent.

5. Experiments

5.1. MuJoCo Playground Experimentation

We originally chose a pick cube task in MuJoCo Play-
ground, where a robot is rewarded for lifting a cube 10cm
above its starting position on a table, as its authors at Deep-
mind demonstrated the sim-to-real transfer of trained poli-
cies to a Franka Emika Panda 7-Degree of Freedom Robot.
We originally intended to benchmark all of our policies on
our own 6-Degree of Freedom Aubo i5 Arm to ensure that
any insights on CNNs could transfer to real-world robotics.
We modified the existing simulation environment to use an
Aubo i5 model 3 instead of a Franka Emika Panda and



Figure 3. Aubo in MuJoCo Playground

Figure 4. Episode Eval Reward for ResNet, ViT, and CNN on Mu-
JoCo Playground

found that the model could not learn any non-random con-
trol policy.

We turned to simulation and benchmarked the baseline
CNN model then discovered the challenge of importing pre-
trained models and weights for architectures such as ResNet
and ViT. We implemented simplified versions of these ar-
chitectures in Jax but they failed to solve the robotic picking
task 4.

5.2. Migrating to Maniskill

Once we transitioned to the Maniskill and attempted to
re-create the vision-guided reinforcement learning results
provided by the authors in the paper we noticed that their
baseline CNN (Nature CNN [4]) learned to achieve the goal
state at a high level of accuracy within a surprisingly short
200k steps then maintained a high level of performance. We
discovered that the authors were concatenating three ele-
ments as inputs to their vision-guided model: the objective
ground truth state of the environment (including all known
object positions) which would only be available within a
simulator and are unrealistic for any real-world environ-
ment, along with simulated RGB camera images, as well
as a simulated Depth Camera RGB-D image. We removed
the objective ground truth data as well as the depth images
from the model inputs and trained a new baseline model (see
Figure 5 using the author’s original training configuration,

which we see takes approximately 700k steps to achieve
similar performance to what was achieved by the privileged-
information model within the first 250k steps, and the model
loses its robustness to over-fitting in later stages (see the
drop near step 1M).

Figure 5. Maniskill Baseline Performance - Push Cube

5.3. Training Variations of DINO

We then attempted to train DINO. We made around 30
different attempts to train a policy that on the Push Cube
task, but were unable to find a policy that would converge.
We attempted to train ViT-Base with patch size 8 (largest
model), ResNet-50, ViT-Small with patch size 16 (small-
est model), attempting each with the entire network frozen
and with the final 3 layers unfrozen. In all variations, the
model did not make significant progress towards learning
the task after between 30m to 6 hours each. We also ex-
perimented with the policy network size as well as various
hyper-parameters, but were unsuccessful. To go through a
few key examples, we began by attempting to train DINO
on ViT-small pretrained frozen weights. This model trained
for 5 hours and failed to converge, so instead we attempted
DINO on ViT-small with last 3 layers unfrozen. However,
this network also failed to converge. The policy was able
to move the robot end effector towards the block and oc-
casionally touch it, but could not move it in a meaningful
way.

We then tried ViT-small with larger policy network and
frozen network, which flailed backwards without touching
the block. Next, we trained a larger policy network and last
3 layers unfrozen. This network was able to push the block
every time, but was not able to move it in the direction of the
goal. We then experimented with different backbones for
DINO including ResNet-50 which performed no better than
the others. Memory limitations prevented us from training a
fully unfrozen network, but we hypothesize that this would
not have performed significantly better. Ultimately, in over
1.5 hours of training, our best DINO model (See Figure 6)
failed to learn a meaningful policy.



Figure 6. DINO

Figure 7. Depth Anything V2

5.4. Depth Anything V2

We then explored using the Depth Anything V2 model
with pre-trained weights. We used the smallest pre-trained
model size (vits) available on hugging face due to compute
limitations. For simplicity and to explore the full potential
of the model architecture we initially did not freeze the en-
coder weights and saw that the model failed to exceed 100k
steps and earn rewards within 15 minutes of training time.
We then froze the encoder later and saw performance that
appeared within range of the baseline model (see Figure 7).
We freeze the encoder weights to preserve what the model
has learned previously as well as make for more efficient
training. We watched videos from the evaluation roll-out
and saw that policy learned to move the robot arm in circu-
lar paths that maintained an equal distance to the table while
directionally aiming towards the cube to push, successfully
solving the task. We trained 5 more policies and noticed
similar circular motions emerging during the training pro-
cess.

5.5. ResNet18 and ResNet50

We returned to explore models with more similar archi-
tectures to the baseline CNN, and started with ResNet18.
We saw that a model with randomly initialized weights was
not able to consistently improve despite matching the eval-
uation rewards of the baseline at one point near 400k steps
(see Figure 10). We then saw that a model with pre-trained

Figure 8. Emerging Behavior: Carrying

weights avoided earlier spikes but still failed to match our
baseline within 15 minutes of compute (given time con-
straints). Therefore we froze all but the 3rd and fully con-
nected layers within the blocks, saw encouraging perfor-
mance on ResNet18 (see the red curve in Figure 9) and had
sufficient GPU VRAM budget to expand to a pre-trained
ResNet50 with all layers frozen except the same two layers.

The ResNet50 model was the first to more closely
match the baseline model performance, though training
wall-clock time for both partially-frozen ResNet models are
a minimum of 10x slower than the baseline CNN. Both
ResNet models learned a shoveling policy that more closely
matched the baseline model motion, which we hypothesize
is related to the convolution layers in both CNN and ResNet
architectures.

Surprisingly the ResNet18 model developed an emerg-
ing behavior (see Figure 8): the policy picked up the cube to
carry it to the destination when the cube could not be shov-
eled directly towards the target. We did not observe this
behavior in any other model but we were able to observe
the same behavior across multiple ResNet18 and ResNet50
models with pre-trained weights, suggesting a link between
the weights learned from ImageNet input imagery and the
learned robot policy.

5.6. Theia

Given the marketing hype of foundation models that
have been pre-trained on related robotics tasks, we tried the
new Theia robotics foundation model from the AI team at
Boston Dynamics. Theia processes RGB camera images
with a learned encoder and backbone layer to map inputs to
a latent space. The latent space can then be decoded into
outputs that reportedly accurately simulates what a variety
of models including CLIP, Segment Anything, DepthAny-
thingV2, and ViT models from Google. The Theia paper
suggests two approaches to training robotics tasks: training



Figure 9. Resnet18 and Resnet50 - Both Partially Frozen

Figure 10. Resnet18 with Pre-trained and Random Weights

models directly using the learned latent representation, as
well as decoding the latents into several simulated model
outputs (e.g. CLIP and DepthAnything) then concatenating
these outputs together.

We trained models with 30 variations of Theia model
sizes (base, small, and tiny), frozen layers, output concate-
nations, and direct use of latents. We found all underper-
formed the baseline model, however we included the best
model we were able to train from the Theia model (see Fig-
ure 11 for results from a Theia model trained with unfrozen
weights on Theia small). This best run took 2.5 hours for
1M steps compared to the baseline model which took 7 min-
utes for 1M steps.

5.7. Discussion

Within all simulated environments the baseline CNNs
appear to outperform more complex models. We suspect
that this is due to the CNNs relatively simple structure and
strong inductive biases (local receptive fields and transla-
tional invariance) that match visual patterns in PushCube,
thus allowing task-relevant features directly from pixel in-
put. Unlike ViTs or frozen DINO encoders, CNNs can be
effectively trained end to end on limited robot data with-
out requiring massive compute times or pretraining. For
ResNets, we hypothesize that they perform almost equally
as well if not better at times than CNNs because their design
is inherently meant to perform as well as a simpler model

due to the skip connections. For ViTs, even the lightweight
ViT model was unable to converge, likely due to lack of
pretrained weights. Given longer compute times and offline
datasets, it may be able to converge, but with randomly ini-
tialized weights and lower compute, it was not able to do
so.

An interesting discrepancy is the failure of DINO to con-
verge while DepthAnythingv2, built using DINO as an en-
coder, achieves significant success. We suspect this is due
to the additional decoder on DepthAnythingv2 which is
trained to extract depth information from DINO features.
Without this, we are expecting DINO or the policy network
on top of it to be able to reconstruct informative depth and
positional information from its features. Given that DINO is
trained on ImageNet which contains millions of diverse im-
ages, it excels at identifying semantic similarity. However,
given that the simulation environment’s uniform, synthetic
scene, its feature extraction is not as useful and thus the
policy head is unable to extract reliable control signals. In
contrast, DepthAnythingv2 pairs the DINO backbone with
a pretrained depth encoder which converts features into co-
herent, per-pixel distance maps. Since these depth outputs
directly encode the cube and table geometry, the policy has
an immediately useful and stable representation, thus ex-
plaining its ability to converge when DINO features fail.

We hypothesize that Theia did worse than the CNN as,
similar to a ViT, contained a minimum of 10 million learn-
able parameters and thus even with pretrained weights could
not converge within a reasonable number of training steps.
We observed that the inference time per step of Theia mod-
els on a set of 256 environments was a minimum of 2
minutes compared to less than 5 seconds with the base-
line CNN, which would be challenging to achieve with our
available GPUs. We believe additional hyper-parameter
tuning may enable training on the Theia-tiny model and that
a more complex task may benefit more from the latent-space
representation that Theia generates. As none of the sim-
ulated outputs from Theia such as DepthAnythingV2 out-
perform the base CNN we are not convinced that Theia’s
latents are more valuable to learn than a simple CNN given
our simulation environment and task.

We know that larger models can take longer to fit the
training data and are more likely to overfit a given train-
ing set. We hypothesize that the out-performance is re-
lated to the relative consistency of the environments (partic-
ularly the similarity between the training environment and
the evaluation environments). We also hypothesize that the
visual sparsity of the simulated environments eliminates the
value that larger models would bring to these policies when
they are deployed in the real-world. Future work would be
to test policies trained with each of these architectures in
the real world to determine their their ability to bridge the
sim-to-real gap.



Figure 11. Theia

We hypothesize that pre-trained models may be more
well-suited to appropriately responding to real-world cam-
era visual inputs as their weights were trained on real world
imagery instead of simulated imagery. Therefore it may
be valuable to use a pre-trained ResNet model rather than
a randomly initialized and purely simulation-trained CNN
when performance is similar in simulation, until it is tested
in the real-world.

6. Conclusion

In this paper, we investigated the use of CNNs as the vi-
sion backbone for simulated robotic picking tasks. Specifi-
cally, we compare a simple CNN to a ResNet50, DINOv1,
Depth-Anythingv2, and Theia. We found that a simple
CNN architecture with randomly initialized weights outper-
formed all other models in both the MuJoCo Playground
environment as well as in Maniskill3. These results point to
a few interesting conclusion. One is that for relatively sim-
ple scenes with limited visual occlusion, simple architec-
tures are the way to go. We hypothesize that based on this,
the more complicated and visually cluttered a scene gets,
the better the complicated architectures will do compared to
the simple CNN. This has important real world implications
when choosing a vision backbone to deploy; it is desirable
to not over-complicate the system while also maintaining
functionality.

Future work could include validating the hypothesis that
more complicated models will indeed outperfrom the sim-
ple CNN as visual occlusion increases by slowly populating
the scene with more distractor objects and evaluating per-
formance. Another direction would be to investigate specif-
ically where the other models besides CNNs perform best
in order to inform deployment.

7. Links

Maniskill Modified
MuJoCo Playground Modified

References
[1] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,

J. Schulman, J. Tang, and W. Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016. 2

[2] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeck-
peper, S. Singh, S. Levine, and C. Finn. Robonet: Large-
scale multi-robot learning. CoRR, abs/1910.11215, 2019. 3

[3] C.-Y. Hung, Q. Sun, P. Hong, A. Zadeh, C. Li, U. Tan,
N. Majumder, S. Poria, et al. Nora: A small open-sourced
generalist vision language action model for embodied tasks.
arXiv preprint arXiv:2504.19854, 2025. 2

[4] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436–444, 2015. 2, 3, 5

[5] L. G. Rosenzweig, B. Shacklett, W. Xia, and K. Fatahalian.
High-throughput batch rendering for embodied ai. In SIG-
GRAPH Asia 2024 Conference Papers, pages 1–9, 2024. 2

[6] J. Shang, K. Schmeckpeper, B. B. May, M. V. Minniti, T. Ke-
lestemur, D. Watkins, and L. Herlant. Theia: Distilling di-
verse vision foundation models for robot learning. arXiv
preprint arXiv:2407.20179, 2024. 2, 4

[7] S. Tao, F. Xiang, A. Shukla, Y. Qin, X. Hinrichsen, X. Yuan,
C. Bao, X. Lin, Y. Liu, T.-k. Chan, et al. Maniskill3: Gpu
parallelized robotics simulation and rendering for generaliz-
able embodied ai. arXiv preprint arXiv:2410.00425, 2024.
1, 2

[8] Y. Wu, X. Li, J. Li, K. Yang, P. Zhu, and S. Zhang. Dino
is also a semantic guider: Exploiting class-aware affinity for
weakly supervised semantic segmentation. In Proceedings
of the 32nd ACM International Conference on Multimedia,
pages 1389–1397, 2024. 4

[9] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao.
Depth anything: Unleashing the power of large-scale unla-
beled data. In CVPR, 2024. 4

[10] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and
H. Zhao. Depth anything v2. Advances in Neural Informa-
tion Processing Systems, 37:21875–21911, 2024. 4

[11] K. Zakka, B. Tabanpour, Q. Liao, M. Haiderbhai, S. Holt,
J. Y. Luo, A. Allshire, E. Frey, K. Sreenath, L. A. Kahrs,
et al. Mujoco playground. arXiv preprint arXiv:2502.08844,
2025. 1, 2

https://github.com/dougfulop/maniskill
https://github.com/citronCode/cs231n_final_project

