
Real2Code2Real: Articulated Full-Scene Reconstruction with 3D Asset
Generation

Eric Liang
Stanford University

450 Jane Stanford Way
ehliang@stanford.edu

Jacob Goldberg
Stanford University

450 Jane Stanford Way
jngoldbe@stanford.edu

Abstract

We present Real2Code2Real, a near-fully automated
pipeline for reconstructing articulated, simulation-ready
3D kitchen scenes from RGBD video. Our method addresses
key challenges in sim-to-real transfer by producing water-
tight, physically accurate mesh assets aligned to real-world
geometry and articulated within a structured URDF repre-
sentation. Given a single RGBD scan of a cluttered scene,
we segment individual objects, generate candidate meshes
using a generative model (TRELLIS), and align them to
their real-world positions via a two-stage matching and re-
finement procedure. We then synthesize a URDF scene com-
posed of primitive assets and replace each with its warped
high-fidelity counterpart, preserving articulation and col-
lision geometry. Our system is evaluated on kitchen en-
vironments with occluded, multi-jointed furniture and out-
performs prior mesh reconstruction techniques in both geo-
metric accuracy and physical consistency. The final scenes
demonstrate high-fidelity articulation and simulation readi-
ness, supporting downstream robotic tasks with minimal hu-
man supervision.

1. Introduction

Within robotics, reinforcement learning (RL) is an im-
portant paradigm that utilizes reward signals and constant
trial-and-error for robots to learn to perform complex,
multi-step tasks like object manipulation and navigation
with minimal human supervision [1, 9]. To reduce real-
world impracticalities like resetting scenes, many robotic
RL agents are trained in simulation with programmable
scenes and rewards to be transferred to similar, real-world
environments [20, 16].

However, simulation-based RL often faces the sim-to-
real gap, where RL agents fail to transfer their high sim-
ulation performance to the real world due to discrepancies
such as inconsistent object shapes, articulation, and mate-

rial properties [26, 2]. Therefore, there have been many
attempts to accurately and efficiently reconstruct real-world
scenes, often through scanning an environment with tech-
niques such as NeRFs and Gaussian splatting. However,
these purely image-based reconstruction methods require
high-resolution videos and manual labeling, and often lead
to noisy meshes that are physically inconsistent within sim-
ulations.

To address the need of accurate, articulated digital-twins
of real-world scenes, we propose Real2Code2Real, an au-
tomated real-to-sim pipeline for efficient, high-quality sim-
ulations. We represent scenes with modular components
produced by generative mesh models, grounded to reality
with spatial alignment algorithms, and articulated with a
systematic scene synthesizer. Whereas prior reconstruction
methods would require comprehensive, unobstructed views
of each component, our process scales smoothly with com-
plex, occluded scenes such as with furniture. This method
drastically reduces the human involvement of data collec-
tion, and provides a simple interface to augment scene com-
ponents to further optimize robot RL.

1.1. Problem Statement

To evaluate our pipeline, we focus on the complex task
of reconstructing and articulating an entire kitchen scene,
which sees many robotic applications such as cooking,
cleaning, and sorting objects. Using a baseline of both pre-
vious reconstruction methods and the ground truth scene,
the task of articulating entire scenes emphasizes the global
positioning of object components and important physical at-
tributes like collisions and scale.

We structure the reconstruction task as follows: Using a
single video of the entire kitchen scene as input, users can
interact with the scene to accurately capture object appear-
ances and joints. We also assume the video has a depth
component, which is now available on many smartphones.
Then, with a custom GUI, users specify the objects to be
articulated and their semantic category by selecting and
prompting a couple of frames from the video. The auto-

1



mated Real2Code2Real pipeline will then produce a set of
files containing meshes, textures, and an XML file specify-
ing object positions and joints to be used with simulation
software.

2. Related Works

Various methods have been proposed over the years to
reconstruct 3D objects and scenes given user visual input,
representing both rendering and generative techniques.

Rendered reconstruction: Early breakthroughs posed
scene reconstruction as an optimization problem to recreate
views given large amounts of camera poses. Techniques like
NeRFs optimized light fields, which downstream robotic
applications like GARFIELD and Robot See Robot Do
then segmented to articulate individual objects [13, 12, 11].
However, NeRFs are implicitly represented and must be re-
computed at every new camera angle, making them infea-
sible for extracting a scene’s objects. Furthermore, NeRF’s
focus on visual rather than physical consistency results in
bumpy surfaces not suitable for simulation [24].

An alternative rendering technique, Gaussian splatting,
optimizes a collection of colored Gaussian primitives to
achieve explicit scene representation [10]. However, like
NeRFs, Gaussians only optimize for input views, resulting
in incomplete and noisy objects when the entire object isn’t
visible [8]. However, follow-ups such as 2D-GS and 4D-
GS, which produce smoother and temporally-based scenes,
have found lots of use in other 3D robotics tasks like navi-
gation [7, 22, 3].

Scene reconstruction: Current real-to-sim pipelines
like RialTo combine rendered object meshes with manual
placement and articulation [21]. Although manual place-
ment allows for greater specificity, it’s much harder to
scale for larger scenes and involves human discretion such
as where to place bounding boxes for incomplete objects.
Mandi et al. propose an automated pipeline with mesh
completion and LLM joint articulation, yet face difficulty
with reconstructing entire scenes due to low mesh reso-
lution [25]. Thus, prior works demonstrate the necessity
of high-quality meshes that are complete, even when input
views are occluded.

3D Asset Generation: Rather than strictly adhering to
input images, generative models predict entire mesh geome-
tries by being trained on large datasets of existing meshes.
Over time, these generative models have become much big-
ger, with the recent TRELLIS model being trained on over
500k meshes [23]. Although these meshes can generalize
to a variety of objects, they still lack joint-articulation, and
most importantly, spatial information relative to a global
scene.

3. Dataset
Since prior works such as that by Mandi et al. primar-

ily use non-depth input, as well as many more images per
object, we compile a new RGBD dataset of 20 scans of 6
different kitchen scenes, for a total of 115 objects includ-
ing drawers, cabinets, microwaves, and fridges. The RGBD
video data was collected using the Record3D app on an
iPhone 15 Pro equipped with LiDAR.

The RGB images have 1920 x 1440 resolution whereas
the LiDAR-based depth images are 256 x 192 pixels, so we
interpolate the depth images for this task. Although no other
augmentation was done on the visual inputs, we apply sev-
eral layers of preprocessing on the point clouds projected
from the inputs to reduce noise from the low-resolution Li-
DAR. We first apply Open3D’s outlier removal algorithm to
remove noisy edge points [27]. Then, because some RGB
pixels may correspond to NAN depth pixels, we apply a
vectorized breadth-first search algorithm to match NAN-
pixels with the closest existing pixel.

Along with fully labeled and segmented images, aver-
aging 228 frames per object, we also saved the meshes, the
input-mesh matched points, and the roughly aligned meshes
for each object. This dataset serves as both a benchmark for
future full-scene mesh generation and alignment attempts,
as well as a dataset for kitchen-based mesh tasks in the fu-
ture. Samples of the dataset for two scenes are shown in
Figure 1.

4. Methods
Our approach is divided into four core stages: (1) Data

collection and pre-processing, where we capture RGBD
videos and segment target objects using SAM-2 [17]; (2)
Mesh generation and refinement, where we iteratively re-
construct object meshes using Microsoft’s TRELLIS model
to select the most physically accurate mesh; (3) Mesh align-
ment where we estimate scale and real-world location using
visual comparisons between the mesh and input frames with
SuperGlue [18]; and (4) Scene synthesis and joint articula-
tion, where we systematically generate articulated scenes
using NVIDIA’s Scene Synthesizer [6]. Fig. 2 offers an
overview of our proposed method.

4.1. Segmentation

To extract relevant object components from the RGBD
video stream, we combine depth information with the Seg-
ment Anything Model 2 (SAM 2) and introduce a simple
GUI to efficiently prompt a couple of points for each ob-
ject. The SAM 2 model was trained on a dataset of over
11-million images, making it generalizable for components
of real-world scenes, and its built-in memory module re-
quires only a single prompt per object, unlike previous
works which require manual reprompting [4]. We further

2



(a) Packard Kitchen RGB (b) Home Kitchen RGB

(c) Basement Kitchen Depth (d) Home Kitchen Depth

(e) Packard Kitchen Matches (f) Home Kitchen Matches

Figure 1: Custom Dataset for Kitchen Scene RGBD and
Alignment

enhance accuracy by applying these prompts on the corre-
sponding depth maps, and taking the intersection of the two
masks. This helps overcome a major issue in purely vi-
sual approaches, where objects that blend in with the back-
ground produce a noisy mask that interferes with mesh gen-
eration [14].

4.2. Mesh Generation

Following segmentation, each object is passed through
the TRELLIS model to generate a watertight 3D mesh from
multi-view RGBD observations. The TRELLIS model en-
codes image features using the DINOv2 model [15], and
then uses rectified flow transformers to generate a latent ob-
ject representation, which is decoded into various formats
like Gaussians or meshes. TRELLIS’ large dataset of de-
tailed meshes allows it to predict entire object bodies, even
when occluded images are provided as input.

Due to the importance of image quality and variety, we
divide each object’s input images into 20 intervals, which
produced the best results during qualitative hyperparameter
tuning. Within each interval, we evaluate each frame by
how large and centered the object is, and select the frame
with the largest, uncropped mask.

To minimize the model’s hallucinations, where an in-
complete view of the object leads to incorrect mesh pre-
dictions, we sample TRELLIS up to 10 times for the same
object, randomly varying the input images and parameters.
We then compare the bounding boxes and volume of the
generated meshes, selecting the mesh with measurements
closest to the average of all the samples to even out any
noise from the generative model.

4.3. Mesh Alignment

The generated meshes are initially in an arbitrary scale
and coordinate frame, requiring alignment to ground truth
scene geometry for each individual object. To address this,
we render RGB and depth images from the generated mesh
using known camera intrinsics.

Then for each of the input frames, we evaluate its simi-
larity with all of the rendered angles. For each of these im-
age pairs, we use SuperPoint to detect keypoints in both im-
ages, and SuperGlue to match these keypoints with a graph-
based attention model for visual context [5]. We then select
the rendered angle with the highest correspondence, and
project these 2D matched points into their 3D coordinates
using depth and camera intrinsic information:

X
Y
Z

 =


(u− cx)Z

fx

(v − cy)Z

fy
Z

 . (1)

where (u, v) are the pixel coordinates, Z the depth, and
camera focal lengths fx, fy and optical center (cx, cy).

Next, we estimate a rigid transformation between the
mesh and ground truth using the 3D correspondences and a
RANSAC-like voting algorithm. We first estimate the scale
local to each input frame k by iterating through pairs of
points (q(k)

i ,q
(k)
j ) from the input point cloud and their cor-

responding points (p(k)
i ,p

(k)
j ) on the rendered point cloud.

We calculate the ratio s
(k)
i,j between the input distance and

the rendered distance and apply it to all the rendered points.
Finally, we evaluate how many pairs of points achieve a dif-
ference between the input and the scaled rendered points
below a small threshold, selecting the scale s(k) with the
most ”votes”.

This algorithm is then applied to find the global scale,
where we apply s(k) to all input-rendered frame pairs and
select the scale s∗ with the highest votes. We repeat the
process to find the best rotation and translation (R(k), t(k))
for each input frame, which then produces the best global
transformation (s∗, R∗, t∗):

3



Figure 2: Overview of the proposed pipeline for any given RGBD video. 1) We segment any meaningful objects in the scene.
2) We generate meshes and algorithmically select the best one. 3) We use visual and depth information to roughly align the
meshes. 4) We insert meshes into a completed, articulated scene.

µ(k)
p =

1

N

N∑
i=1

p
(k)
i , µ(k)

q =
1

N

N∑
i=1

q
(k)
i , (2)

p̃
(k)
i = p

(k)
i − µ(k)

p , q̃
(k)
i = q

(k)
i − µ(k)

q (3)

H(k) =

N∑
i=1

q̃
(k)
i p̃

(k)⊤
i = U (k) ΣV (k)⊤, (4)

R(k) = V (k) U (k)⊤, (5)

t(k) = µ(k)
q − s∗ R(k) µ(k)

p , (6)

(R∗, t∗) = argmin
R,t

K∑
k=1

∥∥∥s∗R(k)p
(k)
i +t(k)−q

(k)
i

∥∥∥2 (7)

Having iterative rounds of voting ensures all points are
considered without being influenced by outliers, providing
a coarse transformation which is then refined using Iterative
Closest Point (ICP) to minimize residual distance between
the matched points.

This two-stage alignment process produces a realisti-
cally shaped, scaled, and aligned mesh ready for substitu-
tion into the URDF scene representation (Fig. 3). It ensures
consistency between the TRELLIS-generated geometry and
the structured physical layout encoded in our simulator.

Figure 3: An overview of the alignment algorithm, where
we find correspondent points between the input RGBD and
the rendered mesh RGBD, project into 3D, and apply a
RANSAC-like voting algorithm.

4.4. Scene Synthesis

The initial two-stage alignment process is great for cre-
ating a realistic mesh, scaled to the scene. However, the
global alignment and proportion is not high enough quality
for downstream applications and optimal articulation. Thus,
we created a separate scene synthesis phase that takes in
the aligned and scaled realistic meshes and outputs a URDF
generated via NVIDIA’s Scene Synthesizer package with
its simple geometries with our realistic meshes. Our scene
synthesis pipeline comprises two stages: (1) extracting ac-

4



curate box dimensions from unaligned meshes to generate a
URDF of simple box primitives, and (2) aligning and warp-
ing each high-fidelity mesh so its front face exactly replaces
the corresponding box primitive in the URDF.

4.5. Dimension Extraction

Raw TRELLIS meshes M are arbitrarily oriented, so
their extents cannot be trusted directly. We therefore rotate
M to minimize its AABB volume. Parametrizing a rotation
R(θ) by three Euler angles θ = (α, β, γ), we solve

θ∗ = arg min
θ∈[0,2π)3

Volume
(
AABB

(
R(θ)M

))
(8)

M∗ = R(θ∗)M. (9)

In practice, we initialize θ from a few canonical orientations
and run the Powell optimizer to find θ∗. Once aligned, the
three extents yield width, depth, and height.

d = extents(AABB(M∗)) (10)

We then use these dimensions as inputs to NVIDIA’s
Scene Synthesizer assets. We modified NVIDIA’s Scene
Synthesizer package to represent the most fundamental as-
sets required in kitchen-scene generation. For example, we
represent individual drawers and cabinets as separate as-
sets rather than using the included complex kitchen assets,
which bundle multiple primitives. The package generates a
structured URDF of the kitchen scene composed solely of
box primitives with correct joint articulation, joint limits,
and collision properties, using the measurements from the
dimension-extraction process.

4.6. Align, Warp, and Replace

After synthesizing a URDF asset B for each object, we
deform the corresponding high-fidelity mesh M so that its
“front face” coincides exactly with B’s front face, preserv-
ing depth and maintaining all collision/articulation geom-
etry. This involves three steps: axis alignment (including
reflections), corner extraction, and local-frame affine warp-
ing (Fig. 4).

4.7. Axis Alignment Including Reflections

First, we center M and B and compute dmesh, dURDF.
We then search for a signed permutation

R ∈ {±1}3×3, detR = +1 (11)

that best aligns two components of dmesh with two com-
ponents of dURDF, discarding the largest mismatch. The
minimizing permutation π∗ yields a permutation matrix P .
Next, consider all sign-flip matrices

S = diag(±1,±1,±1), det
(
S P

)
= +1. (12)

Figure 4: An overview of the three step alignment and warp-
ing algorithm, where we warp the Trellis mesh to the URDF
simple primitive.

For each candidate R = S P , apply R to M0 (producing
MR), sample a dense point set {pk} ⊂ MR, and compute

D(R) =
∑
k

∥∥ pk −ΠB(pk)
∥∥2
2
, (13)

where ΠB(p) is the nearest-point projection onto the mesh
of asset B. The optimal

R∗ = argmin
R

D(R), Mcanon = R∗ M0, (14)

is both axis-consistent and correctly “front-facing” as the
nearest-neighbor L2 distance calculations on each point in
the sampled PCD determine which orientation is the most
similar.

4.8. Corner Extraction

We extract four “front-face” corners on Mcanon using
a purely geometric, quadrant-based procedure. First, ev-
ery vertex of Mcanon is projected onto the XZ-plane, yield-
ing points (x, z). Each projected point is assigned a score
proportional to its radial distance

√
x2 + z2, multiplied by

a factor that gives preference to vertices with lower y-
coordinate (closer to the front of the mesh). We partition the
XZ-plane into the four quadrants, and in each quadrant, we
select the vertex with the highest score; these four selected
vertices become the source corners s0, s1, s2, s3, ordered as
(top-right, top-left, bottom-left, bottom-right).

For the URDF asset B, we identify its front-face corners
by inspecting all vertices of B and finding those closest to
the four ideal extremal points on B’s front face. For each
of these four ideal positions, we choose the actual vertex tk
of B that minimizes Euclidean distance. These four URDF
vertices become the target corners t0, t1, t2, t3, in the same
quadrant order as the source corners.

4.9. Local-Frame Affine Warping

After extracting four corresponding front-face corners
on the canonical mesh Mcanon (denoted {sk}) and on the

5



URDF asset B (denoted {tk}), we build local orthonormal
frames at each set of corners by taking the centroid and edge
directions. In each frame, every corner sk (resp. tk) is pro-
jected into a 2D “UV-plane” (dropping the common depth
coordinate). Because all four front-face corners lie in ex-
actly the same plane, their depth coordinates agree, so there
exists a 2× 2 matrix A and translation t ∈ R2 satisfying(

u′
k

v′k

)
= A

(
uk

vk

)
+ t, k = 0, 1, 2, 3, (15)

where (uk, vk) are the source-frame UV-coordinates of sk
and (u′

k, v
′
k) are the target-frame UV-coordinates of tk.

Solving this small linear system forces those four source
corners to map exactly onto their targets in UV-space.

Finally, any vertex m ∈ Mcanon is warped by first pro-
jecting it into the same source UV-frame (and recording its
depth w), applying the 2D affine map

(u, v) 7→ (u∗, v∗) = A (u, v) + t, w∗ = w, (16)

and then reconstructing in the target frame along its two
in-plane axes plus the preserved depth. After undoing the
initial centering translation, the warped mesh replaces the
primitive asset B in the URDF: its front-face corners and
overall depth match, while all joints and collision settings
remain unchanged.

5. Experiments and Results
We run our pipeline on a variety of kitchen and non-

kitchen scenes to determine its effectiveness in the follow-
ing scenarios:

• How physically consistent is the generated and aligned
mesh compared to real-world counterparts? How do
these metrics compare with baseline approaches?

• How physically consistent is the global scene, and are
such scenes viable for simulation use?

• Can the Real2Code2Real pipeline generalize to a vari-
ety of real-world scenes?

5.1. Object Reconstruction

We evaluate the Real2Code2Real on a variety of every-
day scenes to demonstrate its effectiveness in producing
meshes with the correct dimensions and shape. We com-
pare our default Real2Code2Real pipeline with 2D Gaus-
sian splatting on the same dataset by running COLMAP in
order to estimate camera poses from the input images, and
then reducing the output noise via clustering outlier removal
and black trails stemming from the segmentation borders
[19].

To determine whether our generated meshes are of the
correct scale, we compute the ground truth extent DGT

k and

Method Drawer Water Bottle Microwave Refrigerator

Garfield 22.185% 6.194% 10.185% 10.723%
2D-GS 19.092% 2.975% 8.142% 9.849%
Real2Code2Real 4.192% 3.264% 5.182% 5.172%

Table 1: The average of the three dimension’s margin of
error for various object reconstruction methods given the
same segmented RGBD input.

the mesh extent DR
k for three orthogonal axes k ∈ {x, y, z},

and take the average of each axes’ margin-of-error ek frac-
tion as follows:

DGT
k = max

p∈PGT

pk − min
p∈PGT

pk, (17)

DR
k = max

q∈PR

qk − min
q∈PR

qk, (18)

ek =

∣∣DR
k −DGT

k

∣∣
DGT

k

. (19)

Eavg =
100%

3

(
ex + ey + ez

)
(20)

The dimension performance of the objects are displayed in
Table 1.

Additionally, we evaluate the accuracy of our shapes
by calculating the intersection-over-union (IOU) between
the denoised points from the RGBD ground truthand the
aligned mesh. The IOU captures how well the two vol-
umes overlap, penalizing any missing sections or protru-
sions from our mesh, and are calculated as:

IoU(PGT, MR) =

∣∣ V (
PGT

)
∩ V

(
MR

)∣∣∣∣ V (
PGT

)
∪ V

(
MR

)∣∣ ,
where V (PGT) and V (MR) represent the occupied voxels
between the ground truth and reconstructed mesh, respec-
tively. These results are shown in Table 2.

Method Drawer Water Bottle Microwave Refrigerator

Garfield 31.84% 87.24% 80.77% 78.36%
2D-GS 46.18% 97.62% 88.12% 80.84%
Real2Code2Real 91.25% 93.19% 89.44% 91.02%

Table 2: The intersection-over-union of the aligned ground-
truth point cloud compared to the generated mesh for var-
ious object reconstruction methods given the same seg-
mented RGBD input.

We see that the generative technique of Real2Code2Real
performs on average better for objects found in everyday
scenes, especially for more complex, multi-jointed objects.
As shown in Figure 5, meshes produced by rendering meth-
ods such as 2D-GS often suffer from extraneous noise
around their borders due to noisy segmentation or depth,

6



Figure 5: Comparison between input image, TRELLIS generated mesh, and 2D-GS generated mesh. We see that TRELLIS
provides watertight, smooth meshes in nearly all cases.

even after removing noise as was done for these experi-
ments. This resulted in the dimensions being skewed for
rendering methods, where axes were stretched by noise to
be longer than the object body; this would pose major chal-
lenges in simulation as it would result in incorrect collisions
with the environment. However, Real2Code2Real aligned
meshes were complete with minimal noise which ensured
it’s collision dimensions were accurate to the real world.
However, we still see some margin of error due to TREL-
LIS’ tendancy to hallucinate objects, which can still result
in mismatched shapes and protrusions.

Additionally, we see that the Real2Code2Real aligned
meshes achieved higher and more consistent IOU metrics,
suggesting the aligned meshes adhered more to the real
world. Unlike rendering methods, which are only able to
reconstruct the visible parts of an object, resulting in oc-
cluded regions like the backs of cabinets to be malformed
or hollow, Real2Code2Real’s approach of selecting the best
mesh of several samples ensures the mesh conforms to ge-
ometric expectations whenever input is ambiguous, as seen
with the cabinet bodies in Figure 5.

5.2. Scene Reconstruction

Next, we evaluate the task of combining individual ob-
jects together to form coherent, simulation-ready scenes.
This introduces new challenges such as minimizing col-
lisions and ensuring individual components are properly
aligned. We initially used 2D-GS meshes as a baseline for
global scene synthesis, but the incomplete, non-manifold
edges produced a static scene that was unable to move
within simulation. We present the joint articulation accu-
racy in Table 3 evaluated the Packard Basement Kitchen

(BK) and Packard Second Floor Kitchen (SFK). Cabinet
doors were evaluated on the hinge joint range of motion in
radians, and drawers were evaluated on the slide joint range
of motion as a ratio to the drawer width. We also provide
qualitative evaluations of fully reconstructed scenes in Fig-
ure 6.

Method Cabinets BK Cabinets SFK Drawers BK Drawers SFK

2D-GS N/A N/A N/A N/A
Real2Code2Real 100% 100% 95.25% 91.25%

Table 3: The joint articulation accuracy of the full-scene
reconstruction compared to the ground truth for two scene
reconstruction methods.

We see that Real2Code2Real is able to construct com-
plex, articulated scenes with minimal human input. Any
rotational hinges are well-approximated due to the com-
prehensive nature of the Scene Synthesizer package, and
sliding joints such as drawers are well approximated but
still slightly noisy. Furthermore, objects in the scene are
smoothly aligned with one another, resulting in no joint col-
lisions between the cabinets, drawers, and counters. This
enables downstream usage, such as the ability to directly
import and train robotic RL agents. However, the slight er-
rors in dimensions may still contribute to a sim-to-real gap.

5.3. Generalized Scenes

Although our dataset was focused on kitchen scenes, we
test the robustness of our model by generalizing to other
scenes that may be of interest to simulation RL. We present
these scenes in Figure 7.

7



(a) BK Ground Truth (b) SFK Ground Truth

(c) BK Reconstruction (d) SFK Reconstruction

(e) BK Downstream Usage (f) SFK Downstream Usage

Figure 6: Qualitative results for global scene reconstruction
on the Packard basement and second floor scenes.

We see that there is a high degree of generaliza-
tion for non-kitchen scenes, even when only using the
mesh alignment algorithm without the Scene Synthesizer.
Kitchens often feature a higher quantity of simpler mesh
geometries, whereas these generalized scenes demonstrate
that Real2Code2Real also achieves high performance on
smaller, more intricate scenes.

6. Conclusion and Future Works

We presented Real2Code2Real, a scalable, automated
pipeline that reconstructs complex real-world kitchen en-
vironments into articulated, simulation-ready scenes. By
combining generative mesh models with rigorous alignment
and dimension extraction procedures, we are able to pro-
duce watertight, realistic meshes that are correctly scaled
and physically consistent with the scene. Our warping and
articulation methods further ensure that each object oper-
ates as expected within simulation environments via the
NVIDIA Scene Synthesizer. The resulting scenes not only
exhibit high visual and physical fidelity but also support
robotic learning applications through accurate collision and
joint modeling.

While the results are promising and the reconstructed
scenes appear highly realistic, there are still limitations.
Currently, the generation of the simple URDF representa-
tion—while parameterized by automatically extracted di-

(a) Meeting Ground Truth (b) Fridge Ground Truth

(c) Meeting Reconstruction (d) Fridge Reconstruction

Figure 7: Qualitative results for global scene reconstruction
on a meeting room and mini-fridge.

mensions—requires manual authoring of the overall asset
layout. Some spatial attributes, such as the vertical trans-
lation of wall-mounted cabinets, remain difficult to ex-
tract reliably from RGBD input and were hardcoded in
our scenes. Additionally, the point cloud distance (PCD)
nearest-neighbor similarity metric used in warping becomes
unreliable when the generated mesh is noisy, geometrically
malformed, or has hallucinations; our success is contin-
gent on the relatively clean outputs produced by TRELLIS,
which we were indeed able to obtain for our scenes.

Looking forward, we plan to fine-tune the TRELLIS
model on domain-specific data such as kitchen environ-
ments to improve consistency in mesh geometry, espe-
cially under occlusion. Injecting depth features directly into
the TRELLIS sparse latent transformer could further en-
force geometric consistency and yield meshes that are better
aligned with physical reality. This improvement would en-
hance downstream performance in both dimension extrac-
tion and warping. Finally, we envision a fully automated
pipeline where a coding agent or script intelligently places
and configures all simple URDF assets based on mesh meta-
data—eliminating the last remaining manual bottleneck in
the real-to-sim process.

8



7. Contributions Acknowledgements

Eric Liang designed and implemented the mesh gen-
eration pipeline, including segmentation, multi-view sam-
pling, TRELLIS-based mesh selection, and scale-aware
alignment using SuperGlue. Jacob Goldberg designed
and implemented the scene synthesis pipeline, includ-
ing mesh warping, dimension extraction, and integra-
tion with the URDF-based Scene Synthesizer. Both au-
thors contributed equally to writing the paper and eval-
uating results. We were advised throughout the project
by our lab mentor Mandi Zhao, although we completed
this project for CS231N. Our scene synthesis pipeline
builds upon and significantly extends NVIDIA’s open-
source Scene Synthesizer package, available at: https :
//github.com/NV labs/scenesynthesizer.

All experiments were run locally.

References
[1] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz,

B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell,
A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng,
and W. Zaremba. Learning dexterous in-hand manipulation,
Aug. 2018. arXiv:1808.00177 [cs].

[2] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Is-
sac, N. Ratliff, and D. Fox. Closing the sim-to-real loop:
Adapting simulation randomization with real world experi-
ence, Oct. 2018. arXiv:1810.05687 [cs].

[3] T. Chen, O. Shorinwa, J. Bruno, A. Swann, J. Yu, W. Zeng,
K. Nagami, P. Dames, and M. Schwager. Splat-nav: Safe
real-time robot navigation in gaussian splatting maps. arXiv
preprint arXiv:2403.02751, 2024.

[4] Y. Chen, M.-Y. Son, C. Hua, and J.-Y. Kim. Aop-sam:
Automation of prompts for efficient segmentation. arXiv
preprint arXiv:2505.11980, 2025.

[5] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint:
Self-supervised interest point detection and description. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 224–236, 2018.

[6] C. Eppner, A. Murali, C. Garrett, R. O’Flaherty, T. Her-
mans, W. Yang, and D. Fox. scene synthesizer: A Python
Library for Procedural Scene Generation in Robot Manipu-
lation. Journal of Open Source Software, 10(105):7561, Jan.
2025.

[7] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao. 2D Gaus-
sian Splatting for Geometrically Accurate Radiance Fields.
In Special Interest Group on Computer Graphics and Inter-
active Techniques Conference Conference Papers ’24, pages
1–11, July 2024. arXiv:2403.17888 [cs].

[8] L. Huang, J. Bai, J. Guo, and Y. Guo. On the error analysis
of 3d gaussian splatting and an optimal projection strategy.
In European Conference on Computer Vision (ECCV), pages
247–263. Springer, 2024.

[9] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsou-
nis, V. Koltun, and M. Hutter. Learning agile and dy-

namic motor skills for legged robots. Science Robotics,
4(26):eaau5872, Apr. 2019.

[10] B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis. 3D
Gaussian Splatting for Real-Time Radiance Field Rendering.
ACM Transactions on Graphics, 42(4):1–14, Aug. 2023.

[11] J. Kerr, C. M. Kim, M. Wu, B. Yi, Q. Wang, K. Goldberg,
and A. Kanazawa. Robot See Robot Do: Imitating Articu-
lated Object Manipulation with Monocular 4D Reconstruc-
tion, Sept. 2024. arXiv:2409.18121 [cs].

[12] C. M. Kim, M. Wu, J. Kerr, K. Goldberg, M. Tancik, and
A. Kanazawa. GARField: Group Anything with Radiance
Fields, Jan. 2024. arXiv:2401.09419 [cs].

[13] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis, Aug. 2020.
arXiv:2003.08934 [cs].

[14] J. Montalvo, Á. Garcı́a-Martı́n, P. Carballeira, and J. C. San-
Miguel. Unsupervised class generation to expand seman-
tic segmentation datasets. arXiv preprint arXiv:2501.02264,
2025.

[15] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-
Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes,
P. Huang, S. Li, I. Misra, M. Rabbat, V. Sharma, G. Syn-
naeve, H. Xu, H. Jégou, J. Mairal, P. Labatut, A. Joulin,
and P. Bojanowski. Dinov2: Learning robust visual fea-
tures without supervision. arXiv preprint arXiv:2304.07193,
2023.

[16] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel.
Sim-to-real transfer of robotic control with dynamics ran-
domization, Oct. 2018. arXiv:1710.06537 [cs].

[17] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma,
H. Khedr, R. Rädle, C. Rolland, L. Gustafson, E. Mintun,
J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick,
P. Dollár, and C. Feichtenhofer. Sam 2: Segment anything in
images and videos. arXiv preprint arXiv:2408.00714, 2024.

[18] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich.
SuperGlue: Learning Feature Matching with Graph Neural
Networks, Mar. 2020. arXiv:1911.11763 [cs].

[19] J. L. Schönberger and J.-M. Frahm. Structure-from-Motion
Revisited. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4104–
4113, 2016.

[20] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel. Domain randomization for transferring deep neu-
ral networks from simulation to the real world, Mar. 2017.
arXiv:1703.06907 [cs].

[21] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta,
and P. Agrawal. Reconciling Reality through Simulation:
A Real-to-Sim-to-Real Approach for Robust Manipulation,
Nov. 2024. arXiv:2403.03949 [cs].

[22] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu,
Q. Tian, and X. Wang. 4D Gaussian Splatting for Real-Time
Dynamic Scene Rendering, Dec. 2023. arXiv:2310.08528
[cs] version: 2.

[23] J. Xiang, Z. Lv, S. Xu, Y. Deng, R. Wang, B. Zhang,
D. Chen, X. Tong, and J. Yang. Structured 3d la-
tents for scalable and versatile 3d generation, Dec.

9



2024. arXiv:2412.01506 [cs] – v2 (17 Apr 2025). Code:
https://github.com/microsoft/TRELLIS.

[24] W. Xiao, R. Chierchia, R. Santa Cruz, X. Li, D. Ahmedt-
Aristizabal, O. Salvado, C. Fookes, and L. Lebrat. Neural
radiance fields for the real world: A survey. arXiv preprint
arXiv:2501.13104, 2025.

[25] M. Zhao, Y. Weng, D. Bauer, and S. Song. Real2Code:
Reconstruct Articulated Objects via Code Generation, June
2024. arXiv:2406.08474 [cs].

[26] W. Zhao, J. Peña Queralta, and T. Westerlund. Sim-to-real
transfer in deep reinforcement learning for robotics: A sur-
vey, Sept. 2020. arXiv:2009.13303 [cs].

[27] Q. Zhou, J. Park, and V. Koltun. Open3D: A modern library
for 3D data processing. arXiv:1801.09847, 2018.

10


