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Abstract

To meet the needs for an automated means of detect-
ing musculoskeletal conditions, this project explores binary
classification of bone x-rays as normal or abnormal. It dif-
fers from previous attempts by experimenting with a single
models that are relatively cheap and explainable. The hy-
brid ResNet-ViT model outperforms similar experiments us-
ing a CNN-only architecture. While its performance doesn’t
measure up to previous studies, it has shown potential for
improvement.

1. Introduction

Musculoskeletal conditions affect over 1.7 billion people
worldwide. They are the leading cause of severe, long-term
pain and disability, with 30 million emergency room vis-
its annually and increasing. These conditions are made up
of a variety of diagnoses, ranging from simple fractures to
longer-term conditions like osteoarthritis.

Conditions are often diagnosed by trained radiologists
examining bone x-rays. However, the limited number
of trained radiologists, especially in developing countries,
makes it increasingly critical to have an automated, effi-
cient means of detecting bone abnormalities from x-rays.
This project takes as input a bone x-ray from one of seven
upper-extremity categories (elbow, finger, forearm, hand,
humerus, shoulder, wrist). It passes it through a hybrid Con-
volutional Neural Network (CNN) and Vision Transformer
(ViT) model, and outputs a prediction of whether the bone
is normal or abnormal.

CNNs have been used extensively for medical classifica-
tion tasks with promising results, sometimes exceeding spe-
cialist performance. Their architecture makes them natu-
rally efficient at feature extraction. More modern transform-
ers have also gained immense popularity in recent years.
They are able to capture global context and longer-range
dependencies across an image. Combining the two should
yield a more expressive model.

2. Related Work

The Stanford ML group did the foundational research on
the MURA (musculoskeletal radiographs) dataset that they
produced [1]. Their architecture was a 169-layer Densely
Connected Convolutional Network (DenseNet), followed
by a fully connected layer with one output, and a sigmoid
nonlinearity. The DenseNet was initialized with weights
from a model pretrained on ImageNet, and models were
trained end-to-end using an Adam optimizer to minimize
the weighted binary cross-entropy loss. The top five mod-
els with the lowest validation losses were ensembled for the
final model. See Table 1 for comparisons of their Cohen’s
Kappa score, compared to certified radiologists.

Many other teams have attempted to improve upon the
Stanford baseline. A large number of approaches also used
different flavors of CNN-based architecture. However, like
[2], many failed to match performance of the baseline, fur-
ther highlighting the difficulty of abnormality detection.
Eclipsing the baseline often required computationally ex-
pensive ensemble models like [3], [4]. Any single model
(deep CNN) that matched performance is still expensive [5].
Coming up with such a model also required extensive exper-
imenting that isn’t necessarily theoretically motivated, with
various optimizers, feature extraction methods, and archi-
tectures [6].

More recently, teams have expanded beyond primarily
CNN models. [7] was the inspiration for attempting a hy-
brid CNN-ViT architecture. I wanted to see if I could
achieve similar results using a Residual Network (ResNet),
as they are more efficient than DenseNets [8]. ResNets have
proven successful in other binary classification tasks, such
as detection of Covid-19 in CT images [9].

Besides experimentation with training different model
architectures, there have also been interesting studies with
different learning techniques, such as test-time augmenta-
tion [10] and self-supervised learning [11].
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Study Type Worst Radiologist Best Radiologist Stanford Baseline
Elbow 0.710 0.850 0.710
Finger 0.304 0.410 0.389

Forearm 0.802 0.796 0.737
Hand 0.661 0.927 0.851

Humerus 0.733 0.933 0.600
Shoulder 0.791 0.864 0.729

Wrist 0.791 0.931 0.931

Table 1. Comparisons of Cohen’s kappa score.

Figure 1. Densenet with simple classifier

Figure 2. Densenet with convolutional classifier

3. Methods

3.1. Transfer Learning

Transfer learning is a technique wherein a model de-
veloped for a task is reused as the starting point for a
model on a similar, second task. Instead of training the
CNNs used in my models from scratch, starting with ran-
dom weights, I initialize them with weights from a model
that has been trained on a large, general dataset (ImageNet).
Although the ImageNet images are very different from bone
x-rays, theoretically, the pre-trained model has learned to
extract fundamental, general features like edges, textures,
and shapes. Besides saving computation and training time,
transfer learning is important in this application because
MURA is a relatively small dataset, and a CNN trained from
scratch may not be able to extract features as well.

3.2. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a special-
ized class of deep neural networks primarily designed to
process data with a known, grid-like topology (images!).
They have revolutionized fields like computer vision due to
their ability to automatically learn hierarchical features di-
rectly from raw pixel data. See Figures 1 and 2 for my CNN
architectures with various classifier heads.

3.3. Hybrid CNN-ViT

Vision Transformers (ViTs) adapt the highly successful
Transformer architecture to image analysis. Unlike tradi-
tional CNNs which rely on convolutional layers, ViTs lever-
age self-attention mechanisms to understand visual infor-
mation.

As demonstrated in the work by Hussain et al. [7], the
use of hybrid models can improve accuracy and sensitiv-
ity/specificity in comparison to CNN-only models. Theo-
retically, the CNN does feature extraction, and the ViT is
able to record global dependencies over the entire image. I
implemented a similar model using the TensorFlow Keras
library.

3.4. Loss Functions

I primarily used Binary Cross-Entropy Loss. For a batch
of N samples, the total loss is defined as

− 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where yi is the true label (0 or 1) and ŷi is the predicted
probability for the i-th sample in the batch.

Given the imbalance between positive and negative ex-
amples in the training set, I also tried Facebook AI’s Focal
loss. It is a modification on standard cross-entropy loss:

−(1− pt)
γ log(pt)

γ is a tunable parameter, greater than or equal to zero.
pt is the predicted probability of the true class. If pt is
high, meaning the example is well-classified and ”easy”,
then 1 − pt will be small, and raising it to a power will
make it smaller. This down-weights the contribution of easy
examples to the loss. Similarly, if pt is low for a ”hard” ex-
ample, raising it to a power will not change its contribution
to the loss much.

3.5. Optimizers

The Adam optimizer defines an adaptive learning rate
per parameter. It tries to move faster in directions with con-
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sistent gradients and slower in directions with noisy or in-
consistent gradients:

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t
m̂t =

mt

1− βt
1

v̂t =
vt

1− βt
2

θt = θt−1 −
α · m̂t√
v̂t + ϵ

In contrast, Stochastic Gradient Descent with momen-
tum takes steps in the direction of the mini-batch gradient,
but it also accumulates a ”velocity” (momentum) from pre-
vious gradients. This velocity helps accelerate the gradient
descent in the relevant direction:

vt+1 = γvt + η∇θJ(θ)

θt+1 = θt − vt+1

4. Dataset
MURA (musculoskeletal radiographs) is a publicly

available dataset produced by the Stanford ML group [1].
It contains about 40,000 multi-view bone x-rays from more
than 14,000 studies conducted at the Stanford Hospital be-
tween 2001 and 2012. The studies are grouped into seven
categories as mentioned above. Each study was hand-
labeled as normal or abnormal by a board-certified radi-
ologist while viewing on a high-resolution, medical-grade
display. The original x-rays were acquired with a native
resolution of 1500x2000 pixels, but the clinical images in
the dataset vary in resolution and aspect ratio.

The dataset was already split into training and validation
sets. The training set had 21935 normal and 14837 abnor-
mal images. The validation set was (presumably intention-
ally) more balanced, with 1665 normal and 1532 abnormal
images. Since the Stanford ML group did not disclose their
test set, I randomly reserved 30% of each category of the
validation set to use as a test set.

4.1. Data Preprocessing

Since the first layers of each model I experimented with
used networks pre-trained on ImageNet, the x-rays had to be
preprocessed to be similar to ImageNet [12]. I scaled each
image to 320x320. The square aspect was not too different
from the average/median aspect ratio of the x-rays (0.8).
I also normalized each image to have the same mean and
standard deviation as ImageNet images.

5. Experiments, Results and Discussion
The architectures with which I experimented the most

were the pretrained DenseNet169 (”baseline” model) and

Figure 3. Abnormal Elbow

Figure 4. Normal Elbow

the pretrained ResNet50 + ViT (”hybrid” model).

5.1. Training Baseline Model

First, I tried training several variants of the baseline, us-
ing a simple fully-connected layer with sigmoid nonlinear-
ity as the classifier head. I initially thought the problem
was overfitting, since the model could get pretty high (above
0.90) training accuracy even after little training, but the val-
idation accuracy was stuck. I applied regularization tech-
niques to combat this: adding random augmentations to the
training batches (horizontal flip, moderate amounts of rota-
tion, zoom, contrast) so it would be harder for the model
to ”memorize” data; freezing the DenseNet params to re-
duce the model’s potential expressivity; including pooling
and dropout layers in the classifier head; adding L2 regu-
larizer to the classifier weights. These served to bring the
training accuracy down, but the validation accuracy was cu-
riously still the same.

I then inspected the models’ predictions on the test set,
and saw that they never predicted an abnormal X-ray. The
real problem was that the models were suffering from ma-
jority class bias, which made sense, given that there were
about 1.5 times as many normal as abnormal X-rays in the
training data. The models were resorting to an ”easy” pre-
diction, instead of learning about the data. To encourage ab-
normal predictions and more strongly penalize false normal
predictions, I tried two different techniques, adding class
weights and using a focal loss function. To help the model
generalize to unseen data, I tried using a smaller batch size
(8 instead of 32), since the ”noise” introduced by smaller
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batch gradients might help the model escape narrow lo-
cal minima. Since the problem could also have been with
the classifier’s lack of expressiveness, I replaced the fully-
connected classifier with a convolutional classifier.

None of these changes, applied alone or in combination,
helped the baseline model to predict abnormal X-rays. As
a sanity check, I also trained a model from scratch, with-
out using the ImageNet weights, and it similarly got stuck
predicting only normal X-rays. The breakthrough was in
changing the optimizer to use SGD, instead of Adam. I
had not thought to use an optimizer besides Adam, since all
related works I read reported using Adam with no issues.
If the gradients coming from the minority abnormal class
were initially small, noisy, or sparse (e.g. abnormal features
are subtle), Adam’s adaptive nature might have caused it to
reduce the effective learning rate for parameters related to
detecting abnormalities. Predicting all normal X-rays was a
quick path to reducing the overall loss, in comparison to
the difficult task of distinguishing abnormalities. Unlike
Adam, SGD applies a consistent step size to all parame-
ters, which helps it ”push across” the loss landscape and es-
cape local minima. Combined with the class weights, SGD
could translate the abnormal class’ amplified loss signal into
a consistent push across the entire network.

5.2. Training Hybrid Model

After the baseline model started showing more reason-
able performance in predicting abnormalities, it began over-
fitting to the training set. I had trouble effectively regu-
larizing it (increasing L2 and dropout, and applying more
aggressive mixup data augmentation). Overfitting can be
caused by too many model parameters, which motivated us-
ing a smaller CNN in my hybrid model. I chose a ResNet50.

I first froze the ResNet and trained only my classifier
head, with an initial learning rate of 0.00019 and class
weights boost factor 1.5. I obtained these hyperparameters
by running an Optuna study. Optuna is an open-source, au-
tomatic hyperparameter searching framework. It runs more
efficiently than random search by estimating a promising
area of the hyperparameter space in each trial, and pruning
unpromising areas.

Once the performance started stagnating, I unfroze the
ResNet. I lowered the learning rate to 0.000001 to avoid
drastically changing the ResNet weights on each gradient
update, thus ”forgetting” what it had learned. From experi-
ence in the baseline training, I used SGD as the optimizer.
Since my learning rate was essentially a guess, I applied two
callbacks monitoring the validation AUC in the training, to
avoid fruitlessly training a model which is not improving af-
ter a certain number of epochs: early stopping and learning
rate reduction.

It seemed that the model was mostly stagnating, so I
started increasing the learning rate, which yielded improve-

ment. However, after more epochs, I noticed an interesting
phenomenon, that the training accuracy was starting to de-
crease slightly, even as the validation accuracy and AUC
were increasing. This indicated training stability, so I de-
cided to switch optimizers to Adam. I also noticed that both
training and validation recall were low, so I increased the
class weights boost.

After the model started plateauing in both training and
validation accuracy, I ran another Optuna study to see if a
better combination of learning rate and class weights boost
could yield better results. The various Optuna trials had
pretty similar results, indicating that the model had reached
its capacity to learn.

5.3. Quantitative Results

5.3.1 Metrics

Using this confusion matrix for binary classification:

Predicted
Actual Positive Negative
Positive TP FN
Negative FP TN

I’ll evaluate models using the following metrics:

• Cohen’s kappa statistic = p0−pe

1−pe
, where

p0 = TP+ TN
N (observed agreement)

pe =
TP + FP

N · TP + FN
N + TN + FN

N · TN + FP
N (agreement by

chance)

N = TP + TN + FP + FN (total number of samples)

• Sensitivity = TP
TP + FN

• Specificity = TN
TN + FP

I will also calculate the Area Under the Curve (AUC)
metric, which measures the performance of a binary classi-
fier by quantifying its ability to distinguish between positive
and negative instances across various probability thresh-
olds. It is a rough measure of accuracy, which is more
indicative than the actual accuracy metric for imbalanced
datasets. For example, a model that always guesses ”nega-
tive” would achieve 95% accuracy on a dataset that has 95%
negative samples, but it is not necessarily a good model be-
cause it cannot distinguish positive samples). An AUC of 1
represents perfect classification, while 0.5 is no better than
random guessing.

5.3.2 Results

See Table 2. While Cohen’s Kappa did not come close to
the Stanford group, it is encouraging that the hybrid model
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Figure 5. True vs. false positive, color contrast

Figure 6. True vs. false negative, correct alignment

outperformed my baseline CNN-only model in most cate-
gories, attesting to the power of transformers. Potentially, it
did less well in the elbow studies because long-range depen-
dencies that aren’t related to an abnormality, like the angle
of the elbow, confused it. For its lower performance in the
finger studies, similarly, long-range dependencies across the
image might not be as relevant, if finger abnormalities are
quite small. The fact that the AUCs are relatively high also
suggests room for easy improvement, like choosing differ-
ent prediction thresholds for each category.

5.4. Qualitative Results

See figures 5 and 6 for comparisons of correctly classi-
fied (left image) vs. misclassified (right image). One rea-
son for false positives is that color-contrast within the bone
could be a strong signal for an abnormality, but the color
contrast may also arise from variance in the x-ray machin-
ery. False negatives are harder to judge, because the ab-
normality might be subtle, especially if larger patterns like
skeletal alignment look normal.

6. Conclusion and Future Work

If I had more time, my goal would be to try to surpass the
Stanford group’s metrics. Backing up, I could also try to im-
plement and train the Stanford group’s original baseline, to
try to get close. This would potentially involve a larger hy-
perparameter sweep. I need better strategies for debugging
models when their performance isn’t improving, as well as
more compute power to train a larger hybrid model (big-
ger ResNet, more transformer layers). It would also be in-
teresting to experiment with additional strategies that were

mentioned in the Related works section, like self-supervised
learning and test-time data augmentation.

7. Contributions
This was a one-person project. All aspects of this project

were handled by the author. This project did not use any
public code nor involve non-CS231N contributors.
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