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Abstract

Vision Transformers (ViTs) demonstrate strong perfor-
mance on clean images but suffer severe degradation when
confronted with adversarial examples, with performance on
adversarial images becoming very poor even under sub-
tle perturbations. While general adversarial training can
improve robustness, it requires computationally expensive
fine-tuning of the entire model, making it impractical for
many applications.

We propose a lightweight defense mechanism that ad-
dresses VIiT vulnerabilities without full model retraining.
Our approach evaluates ViT robustness against multiple ad-
versarial attacks from the torchattacks library, measuring
accuracy drops between clean and adversarial inputs. We
then develop a novel attention-based defense architecture
consisting of three components: (1) an adversarial detector
that classifies whether inputs are clean or adversarial using
CLS token representations from the 6th attention block, (2)
an unsupervised behavior discovery system that uses PCA
and K-means clustering to identify adversarial strategies
as spatial shifting, attention attenuation, or clean-like pat-
terns, and (3) adaptive gate networks—Ilightweight MLPs
that selectively transform disrupted attention patterns in
layers 7-12 based on the diagnosed adversarial behavior
type.

The detector is trained on 7 attacks and tested on 12 at-
tacks with 5 unseen in the training sets. When adversarial
inputs are detected, cluster-specific gate networks correct
the attention patterns without modifying the underlying ViT
parameters. Clean inputs bypass this intervention entirely,
preserving normal model behavior.

Our results demonstrate that ViTs exhibit varied vulnera-
bility across different attacks, with some causing substantial
accuracy degradation despite imperceptible perturbations.
The proposed detector generalizes effectively to unseen at-
tack types, and our adaptive gating approach considerably
improves performance on adversarial examples. By avoid-
ing costly full-model fine-tuning, our lightweight method of-

fers a computationally efficient path toward more robust vi-
sion transformers, advancing adaptive defense mechanisms
against diverse adversarial threats.

1. Introduction

Transformer-based detectors such as DETR and ViTs
have advanced object detection by leveraging global self-
attention mechanisms for end-to-end prediction. Despite
their effectiveness, the holistic nature of attention intro-
duces novel vulnerabilities to adversarial perturbations,
which remain underexplored compared to their convolu-
tional counterparts.

In this work, we introduce a lightweight and modular
defense framework designed to detect, diagnose, and mit-
igate adversarial attacks on transformer-based vision mod-
els. Our approach does not require changes to the underly-
ing model architecture, making it broadly applicable across
transformer variants.

To first better understand how adversarial attacks affect
attention patterns, we begin by constructing our very own
universal adversarial patch capable of degrading detection
performance across a wide range of images, object classes,
and spatial locations. The robustness of this patch is fur-
ther evaluated under transformations such as scaling, rota-
tion, and translation, revealing consistent vulnerabilities in
attention-based detectors.

Next, we introduce our novel attention-based defense ar-
chitecture consisting of three components: (1) an adversar-
ial detector that classifies whether inputs are clean or ad-
versarial using CLS token representations from the 6th at-
tention block, (2) an unsupervised behavior discovery sys-
tem that uses PCA and K-means clustering to identify ad-
versarial strategies as either spatial shifting, attention at-
tenuation, or clean-like patterns, and (3) adaptive gate net-
works—Ilightweight MLPs that selectively transform dis-
rupted attention patterns in layers 7-12 based on the diag-
nosed adversarial behavior type. We train a lightweight ad-



versarial classifier that detects whether an input image has
been manipulated. The classifier is trained on a subset of at-
tacks and demonstrates generalization to unseen adversarial
types. Building on these detection results, we design a di-
agnoser module that clusters attention disruption patterns to
identify the nature of adversarial interference.

Finally, we propose a gated attention mechanism that
conditions transformer attention on diagnostic signals. This
mechanism selectively adjusts attention weights in later lay-
ers to suppress adversarial influence, enhancing model ro-
bustness while maintaining architectural modularity.

Our results show that the universal patch significantly
disrupts model performance across diverse conditions, and
that our classifier achieves strong generalization to novel
attacks. The proposed diagnoser and gated attention
components lay the foundation for future modular and
architecture-agnostic defenses against adversarial threats.

1.1. Problem Statement

Vision Transformers (ViTs) achieve high accuracy on
clean inputs but exhibit significant performance degradation
under adversarial perturbations—even when the changes
are nearly imperceptible. While adversarial training can
improve robustness, it typically requires full-model fine-
tuning, which is computationally intensive and difficult to
scale across diverse threat models.

Current defense strategies have the following limitations:

* Expensive retraining: Methods like adversarial train-
ing require full access to model parameters and incur
high computational cost.

e Architecture coupling: Many defenses introduce
changes to model internals, reducing modularity and
generalizability.

* Binary-only detection: Existing lightweight methods
often stop at detecting adversarial inputs without ex-
plaining or mitigating failure modes.

* Poor generalization: Most defenses are tightly cou-
pled to specific attack types and fail to generalize to
unseen perturbations.

We address these challenges by proposing a modular,
computationally efficient defense framework for ViTs that
detects, diagnoses, and mitigates adversarial effects without
altering the base model. Our contributions include:

e Multi-Attack Vulnerability Assessment: We bench-
mark ViT robustness against six adversarial attacks
from the torchattacks library, as well as our own
universal patch attack, quantifying accuracy drops and
identifying differential sensitivity across attack types.

* CLS-Token Based Adversarial Detector: Using only
the CLS token embedding from attention block 6, we
train a lightweight classifier to distinguish clean from
adversarial inputs. Trained on a subset of attacks, it
generalizes well to previously unseen ones.

* Unsupervised Attention Diagnoser: For detected ad-
versarial inputs, we apply PCA followed by K-means
clustering on internal attention statistics to categorize
disruptions into three types: (1) spatial shifting, (2) at-
tention attenuation, and (3) clean-like miscellaneous
patterns.

e Cluster-Guided Adaptive Gating: Each disruption
type is mapped to a small MLP gate network that ap-
plies a corrective transformation to attention matrices
in blocks 7-12. Clean inputs bypass this mechanism
entirely, ensuring no performance degradation on be-
nign examples.

This approach enables fast, interpretable, and generaliz-
able adversarial robustness for ViTs—without retraining or
modifying core model weights—paving the way for practi-
cal and adaptive transformer defenses.

Adversarial vulnerabilities in object detection have been
widely explored, particularly through the use of univer-
sal adversarial patches. Wu et al. [3] demonstrate that
ensemble-trained, transformation-robust patches can effec-
tively suppress detections in CNN-based models. Nguyen et
al. [4] extend this understanding by benchmarking a broad
range of patch-based and black-box attacks across archi-
tectures. However, these works either focus exclusively
on CNNss or evaluate attacks without proposing lightweight
defenses tailored to transformer-based detectors. Our ap-
proach shifts the focus from attack creation to defense by
introducing a modular detection, diagnosis, and mitigation
pipeline for vision transformers.

Recent defenses have leveraged attention behavior to
counter adversarial attacks. Zhao et al. [7] classify attacks
into attention-shifting and attention-attenuating categories
and propose two complex modules (FPAS and ANL) in-
tegrated into Wide-ResNet to defend against them. While
they introduce insightful attention categorizations, their ap-
proach is burdened by architectural modifications, full re-
training, and model-specific tuning. In contrast, we retain
the model structure and use internal attention statistics to
drive downstream detection and gating modules, enabling
generalizable, low-cost protection.

Wu et al. [8] propose PROTEGO, a lightweight detec-
tion framework for ViTs that leverages differences in [CLS]
token attention to train a binary classifier. However, their
work ends at detection and does not incorporate any diag-
nosis of the type of attention disruption or targeted mitiga-
tion. Moreover, PROTEGO'’s classification is restricted to a



single token and lacks structural awareness of full attention
maps. We build upon this foundation by (1) classifying the
type of attention failure via unsupervised clustering, and (2)
selectively correcting attention with cluster-specific gating
networks, thus closing the loop from detection to correction.

Additional attention-guided defenses include He et
al. [1], who introduce an attention-enhanced autoencoder
that improves detection via multi-scale feature learning,
though it imposes considerable overhead and lacks plug-
and-play flexibility. Yu et al. [7] present a vision-language
model that leverages text-guided attention to align adversar-
ial and clean features, but it relies on auxiliary modalities
and does not generalize to pure vision settings. In contrast,
our method remains modality-independent and lightweight,
requiring no architectural changes or external data.

Empirical comparisons between CNNs and ViTs further
motivate our transformer-specific defense. Aldahdooh et
al. [11] observe ViTs’ robustness to standard perturbations,
while Shao et al. [12] highlight vulnerabilities to high-
frequency noise. Lin et al. [10] stress the need for robust
defenses in real-world applications but do not explore the
unique internal structures of ViTs. We fill this gap by uti-
lizing multi-layer attention distributions to build a diagnos-
tic representation space that supports both classification and
correction of adversarial influence.

In summary, our work synthesizes insights from attack
taxonomies, attention-driven defense, and ViT-specific vul-
nerability studies to propose a novel, lightweight, plug-in
pipeline. Unlike retraining-heavy, architecture-modifying
defenses, our method enables practical, interpretable pro-
tection through modular detection, unsupervised diagnosis,
and learned attention gating.

2. Method

We outline the methodology for three components: (1)
creating and evaluating a universal patch, (2) analyzing ViT
robustness, and (3) developing a classifier for detecting ad-
versarial perturbations.

2.1. Universal Patch Technical Approach

We construct a universal adversarial patch P € R3*/xw
and optimize it to suppress object detection across diverse
images using a frozen DETR ResNet-50 model. At each
iteration, a sampled image x is patched with a randomly
transformed P: translated to a random position, rotated
within +£30°, and scaled between 0.5x and 1.5x. The
composite image Z is passed to the model f, and the loss
is computed from the output logits {/;}¥,, where each I;
corresponds to one of the N object queries in DETR. We
minimize the mean of the maximum class probabilities:

N
1
r— -5 ; max softmax(l;)[c] M

This encourages the patch to lower object classification con-
fidence across all queries. The patch is trained over multiple
images and transformations to ensure universality.

We initially evaluated performance on 25 images from
Open Images V7 using detection count above 0.9 con-
fidence, relative detection drop, and average confidence
score. To benchmark, we evaluate three non-optimized
baseline patches—a black square, a checkerboard pattern,
and random noise—each subjected to the same geometric
transformations. These baselines confirm that without tar-
geted optimization, patches have minimal impact on detec-
tion outcomes. We trained the universal patch by minimiz-
ing a combined loss that encourages differences between
clean and patched model outputs (initialized as the checker-
board pattern, as it performed the best). The loss is defined:

L=a«a- (fKL (softmax(yclean) || log softmax(ypatched)))

+03 - (—ShiftDistance(bcican, Bpatched))

where y are the classification logits, b are the bound-
ing box coordinates, KL(- || -) is the Kullback-Leibler di-
vergence, and ShiftDistance measures spatial displacement
between detections. Hyperparameters « and 3 balance clas-
sification and localization disruption. The patch was opti-
mized via gradient descent with value clamping to maintain
valid image inputs.

2.2. Universal Patch Evaluation Method

To evaluate the effectiveness of the learned adversar-
ial patch, we employ a combination of detection-level and
structural metrics. In addition to reporting detection counts
before and after patching, we calculate the suppression ra-
tio, which quantifies the proportion of original bounding
boxes that no longer have high-overlap matches after patch-
ing (IoU threshold = 0.5). We also compute the sum dis-
placement of box centers (L1 distance) between matched
clean and patched predictions to capture spatial shifts in
localization. To assess semantic uncertainty, we include
the average entropy of the softmax output across all object
queries, providing a measure of how confident the model
remains post-patch. Together, these metrics allow us to de-
tect not only whether objects are missed or mislabeled but
also whether the patch induces more subtle degradations in
detection performance.

2.3. Attack Analysis Technical Approach

We utilize the pretrained timm ViT model
vit_base_patchl6.224, which is pretrained on
the ImageNet-1k dataset. The cross-entropy loss function



used for pretraining the model is defined as follows:

e”e
Pe= —c—— (2)
Zle e%
C
Log =~ yelog (pe) 3)
c=1

where C' is the number of classes, z. denotes the logit for
class ¢, and y.. is the one-hot encoded ground truth label.

We evaluate this fixed pretrained model on our prepro-
cessed dataset, which includes both clean and adversarial
examples as detailed in §4.3. Given input images, the model
outputs logits over all classes, which are then used to predict
the corresponding object category labels.

We employ a variety of standard adversarial attacks
sourced from the torchattacks library, excluding base
classes Attack and MultiAttack. We iterate through
these attack definitions using tgdm to monitor progress.
For each attack, we instantiate it by passing the pretrained
ViT model directly to the corresponding class, relying on
the default hyperparameters provided by torchattacks
(e.g., perturbation bound ¢, step size o, and number of iter-
ations). This streamlined setup enables standardized evalu-
ation across diverse attack types.

2.4. Adversarial Defense Architecture

Figure 1. Architecture.

ial Defense Archi for Vision

Our defense mechanism introduces a novel attention-
based approach that operates on the internal attention pat-
terns of the ViT model. The architecture consists of three
main components: an adversarial detection classifier, an at-
tention pattern clustering system, and a collection of adap-
tive gate networks.

24.1 Adpversarial Detection and Clustering

We first extract the CLS token representation from the 6th
attention block of a 12-layer ViT model. This intermediate

layer is selected because it balances low-level noise sensi-
tivity with high-level semantic awareness. The CLS token
output hgﬁ) is used for both binary adversarial detection and
multi-class behavior classification.

Adversarial Detection. We define a binary classifier
MLPyetector trained to distinguish between clean and adver-
sarial samples:

h'% = Blocks(ViT(X)) 4)

cls
Padv = MLPdetector(hE?S)) (5)

where X is the input image and p,qy is the predicted prob-
ability of being adversarial. The detector is trained using
binary cross-entropy loss on a curated dataset of clean and
adversarial samples.

Unsupervised Behavior Discovery. To further under-
stand adversarial strategies, we project the CLS embeddings
of adversarial samples using Principal Component Analysis
(PCA), and apply K-means clustering:

zi, = PCA(hy") (©)
- ; (i) _ 2 7
Ci arg keI{r(l)l,{l,Q} ”zpca ll’k”Q ( )

where ;. is the centroid of cluster %, and ¢; is the assigned
cluster for sample ¢. Through qualitative inspection of at-
tention maps and cluster composition, each cluster is heuris-
tically mapped to a behavior type: spatial shifting, attention
attenuation, or clean-like.

Diagnosis Head Training. We then train a separate
multi-class classifier MLPgijagnoser to predict cluster mem-
bership from the CLS token representation:

A (6,7)
Gy = MLPdiagnoser(h ) 3

cls

The classifier is trained using cross-entropy loss with clus-
ter assignments c¢; as pseudo-labels. This enables real-time
diagnosis of adversarial behavior types at inference time.

Training Pipeline. Our defense pipeline is designed to
be lightweight and modular. The pretrained Vision Trans-
former (ViT) is kept entirely frozen; only the small MLP-
based modules (diagnoser and gate networks) are trained.
The steps are as follows:

1. Extract intermediate CLS token embeddings hélﬁs) from
a large batch of adversarial training samples using the
frozen ViT.

2. Apply PCA for dimensionality reduction and perform
K-means clustering to group samples based on atten-
tion behavior.

3. Assign each cluster to a high-level behavior category:
shifting, attenuation, or miscellaneous.



4. Train a lightweight MLP diagnoser using these
pseudo-labels.

5. For each behavior category, train a dedicated MLP gate
network that applies corrective transformations to at-
tention maps in blocks 7-12.

This pipeline ensures that the core ViT remains un-
touched while enabling behavior-specific interventions
through efficient and interpretable modules.

This modular approach supports both detection and in-
terpretation, enabling the system to not only identify adver-
sarial inputs but also understand their disruption strategies
through attention behavior.

2.4.2 Adaptive Gate Networks

To counteract specific adversarial behaviors our diagnoser
identified, we introduce a set of adaptive gate networks,
each trained to transform disrupted attention patterns into
more robust configurations. Each gate is a lightweight MLP
that operates on the attention weight matrix from a given
head:

Gi(A) = MLPg (LayerNorm(A)) 9)
Agaled = Gci (A) (10)

Here, A € RY*Y denotes the attention map, G, is the
gate corresponding to cluster k& € {0,1,2}, and ¢; is the
cluster ID predicted for sample ¢. Clean samples bypass
this process entirely.

2.4.3 Gated Attention Integration

We apply the adaptive gates to attention layers 7 through
12 of the ViT, leaving earlier blocks unaltered to preserve
foundational representations. During inference, the gating
module activates only when the adversarial classifier flags
an input as attacked. The corrected attention is computed:

KT
A;; = softmax (Q J > (11)

Vd

G (A;;) ifc ,1,2
A;.g;ted _ i (Aj) 1 c; € {0 } (12)
Ayj if ¢, = —1 (clean)
0; = A¥Y, (13)

This selective, cluster-aware intervention preserves
model behavior on benign inputs while adaptively correct-
ing attention distortions in adversarial cases. The gated self-
attention can be summarized as:

Atte]lti()]l((@ 1( & ) (iate (S()ft]“ax ( )> L
i ) Cq /ilk

2.5. Attack Analysis Evaluation Method

To assess the robustness of the pretrained
vit base patchl6.224 model, we evaluate its
classification performance on both clean and adversarially
perturbed inputs. Accuracy is computed as the proportion
of correctly classified samples within a batch.

Given a batch of image-label pairs {(z;,v;)}2 ,, the
model outputs logits /; € R, where C' is the number of
classes. Predicted labels are computed by applying a soft-
max followed by an arg max operation:

§; = arg  max __softmax(l;)[c].

ce{l1,...,C}

The number of correct predictions is:

B
nCorrect = Z (9 = yi),

i=1

where 1(-) is the indicator function. This is used to calculate
the accuracy through nCorrect/total.

To quantify the impact of adversarial perturbations, we
calculate the attack success rate as the difference in accu-
racy between clean and adversarial inputs:

Attack Success Rate = Accuracy,, — ACCUTacy, yersarial -

This metric reflects the degradation in performance
caused by the attack. Together with accuracy, it provides
a comprehensive view of the model’s vulnerability to ad-
versarial manipulation.

2.6. Attack Classifier Technical Approach

To evaluate adversarial robustness under training, we
fine-tune a Vision Transformer classifier on a combined
dataset of clean and adversarial examples (see §3.3). This
differs from earlier zero-shot evaluations using a frozen ViT
model.

We use vit base_patchl6_224 from the timm li-
brary, pretrained on ImageNet-1k. The final classification
layer is replaced to output logits over 1000 classes.

Training is done with cross-entropy loss:

c

Log == yeloghe, Pe= —g——
c=1 Z_j:l e

where C' = 1000, and z,. is the logit for class c.

We use AdamW (learning rate 3 x 107°, weight decay
0.01) to fine-tune the model on a dataset augmented with
adversarial examples from FGSM and PGD attacks. This
allows us to assess how adversarial training affects trans-
former robustness in a controlled setting.

e



2.7. Attack Classifier Evaluation Method

After training, each model is evaluated on a held-out val-
idation set drawn from the combined distribution of clean
and adversarial examples. We assess the classifier’s perfor-
mance in two ways:

(1) Adversarial Detection Accuracy. The first evalua-
tion objective is to assess whether the model can correctly
detect if an input image has been adversarially perturbed.
This is formulated as a binary classification task, where la-
bels are either clean (0) or adversarial (1). Given predic-
tions ¢; and ground truth labels y; over a batch of size B,
we compute detection accuracy as:

B

1 .
Accuracy g .. = 5 Z (9 =vi)

i=1

(2) Attack Type Classification Accuracy. For samples
identified as adversarial, we evaluate the model’s ability to
classify the type of perturbation. In our setting, adversarial
examples fall into two categories: spatial shifting and atten-
tion attenuation. This is treated as a multi-class classifica-
tion problem over the adversarial subset A C {1,..., B}:

= ﬁzl(?)i = Yi)

i€ A

Accuracyattack—type

where | A| denotes the number of adversarial samples, and
Ui» y; are the predicted and true attack types respectively.

Together, these metrics allow us to evaluate both the sen-
sitivity of the models to adversarial perturbations and their
capacity to interpret the nature of the attacks.

3. Dataset and Features

This section details the datasets and feature representa-
tions utilized across our experiments. We first describe the
dataset and features used for the universal adversarial patch
evaluation. Following this, we present the dataset and fea-
ture extraction methods employed for the adversarial attack
analysis and classifier training. For each part, we provide an
overview of the preprocessing steps, dataset composition,
and relevant features used to facilitate our evaluations.

3.1. Dataset for the Universal Patch

We use a subset of 400 images from the Open Images
V7 validation set, accessed through the FiftyOne library.
Our training set consisted of 300 samples, the validation
set included 75 samples, and the test set had 25 samples.
Images were selected to include multiple object types, par-
ticularly instances of the “Person” class. Each image is
resized to 640 x 480 and normalized to match the DETR
model input requirements. Preprocessing is handled with
torchvision.transforms. Patches are applied dur-
ing training with randomized position, rotation, and scale.

Dataset setup and preprocessing are complete, and prelimi-
nary results on this subset are reported in the later section.

M | oLl

Figure 2. Example from dataset with predicted detection boxes

3.2. Features for the Universal Patch

We extract visual features using a frozen DETR ResNet-
50 model pretrained on the COCO dataset. The model en-
codes each input image into a fixed set of object-level em-
beddings, which are used to predict class labels and bound-
ing boxes. These features remain unchanged during patch
optimization and serve as the basis for evaluating the effec-
tiveness of the universal adversarial patch.

3.3. Dataset for Attack Analysis and Classifier

This work uses ImageNet-1k (ILSVRC 2012), a dataset
with over 1,000 object categories and thousands of human-
annotated images per class. Our processed set includes
12000 training, 375 validation, and 16000 test images.

The images are first preprocessed to meet the Vi-
sion Transformer (ViT) input requirements—resized to
224x224, normalized, and appropriately transformed. Fol-
lowing preprocessing, 12 adversarial attacks (listed in Ta-
ble 4) are applied to generate perturbed images. Thus, our
dataset comprises both clean and corresponding adversarial
examples for evaluation.

ImageNet’s scale and diversity enable robust evaluation
across many categories, essential for testing generalizable
attacks and defenses. The clean and adversarial pairs al-
low assessment of detection and robustness. Preprocessing
aligned with ViT ensures realistic evaluation of transformer
vulnerabilities and defenses. This makes the dataset well-
suited for advancing adversarial robustness research in self-
supervised ViT models.

3.4. Features for Attack Analysis and Classifier

We extract two types of features from the pretrained Vi-
sion Transformer (ViT) to support adversarial classification
and behavioral analysis:

* Final-layer CLS token: For adversarial image clas-
sification, we use the CLS token embedding from the



Figure 3. Data Visualization

final Transformer block (i.e., just before the classifica-
tion head). These features encode high-level semantic
representations and are used as input to a binary MLP
classifier trained to distinguish clean versus adversarial
examples.

* Intermediate CLS token (Block 6): For diagnosing
the type of adversarial behavior, we extract CLS token
embeddings from the 6™ Transformer block. These in-
termediate representations are projected via PCA and
clustered via KMeans to assign pseudo-labels for train-
ing the diagnoser module.

All features are derived directly from the ViT model
without using gradients, handcrafted features, or model
modifications. This preserves the integrity of the backbone
while enabling lightweight downstream analysis.

4. Universal Patch Results
4.1. Spatial Shift Results

Table 1 lists each sample image and the total bounding
box shift from applied patches (see patches and example of
bounding box shifts in appendices).

4.2. Evaluation

While our initial quantitative evaluation on 25 Open Im-
ages V7 images—using metrics like detection count above
0.9 confidence, relative detection drop, and average con-
fidence score—showed minimal changes before and after
patching, a more detailed qualitative analysis revealed sub-
tle yet important effects. Specifically, although the number
and confidence of high-confidence detections stayed mostly
stable, randomized patches caused noticeable shifts in the
spatial positions of some bounding boxes. Among the ba-
sic patches tested, the checkerboard pattern performed best,
likely because its high-frequency alternating design dis-
rupts convolutional filters by creating strong local contrast
changes. This interference can mislead feature extraction
broadly but effectively, especially in a model like DETR
that combines local features with global attention.

The universal patch resulted in a slightly larger average
shift (0.415) compared to the checkerboard pattern (0.39),

Table 1. Shift Distances for 25 Images

Image Noise | Black | Checker | Universal
74d93bd93a93f1c6 | 0.10 | 0.14 0.70 0.46
0c3567f0d4d650eb | 0.14 | 0.13 0.35 0.21
73eaelcde3c00a7c 0.08 0.27 0.16 0.23
ed6f851d4a0e3ds3 | 0.09 0.18 0.42 0.49
34edbe9338a0ac9e 0.04 0.18 0.18 0.21
348791ab671e2fbd | 0.10 | 0.31 0.38 0.42
6dbed0b2fe4330bf | 0.06 | 0.20 0.21 0.32
c02762cac9bb6268 | 0.23 0.41 0.52 0.49
c06612aadc00e430 | 0.12 0.11 0.29 0.48
abd294100359484a | 0.20 | 0.01 0.44 0.28
3d52f50f08¢95bed | 0.16 | 0.10 0.48 0.46
b47e04fb534b0ad4d | 0.12 | 0.08 0.59 0.46
19a1e09742a09af8 | 0.19 0.09 0.75 0.77
€2b984fe1f63d154 0.09 0.04 0.23 0.33
147707a51bf8041e | 0.04 | 0.08 0.23 0.28
dd1160459778fdd6 | 0.13 | 0.11 0.42 0.54
cf017424cfdc910e 0.10 | 0.23 0.21 0.25
1b25a4529¢193b65 | 0.08 0.06 0.58 0.52
d27b925e9cdbebob | 0.07 0.08 0.37 0.14
b56c1e83147b4608 | 0.06 | 0.09 0.21 0.19
bce58acOfedc31de8 0.08 0.09 0.60 0.46
e4c0b58f9ds50f500 | 0.13 | 0.16 0.34 0.29
2d123c968fecdd92 | 0.04 | 0.04 0.31 0.11
2cdfc666fccacc38 0.03 0.07 0.19 0.17
8578d2363c3df45e | 0.12 0.20 0.70 0.50
Averages 0.11 0.13 0.39 0.415

indicating it might cause marginally more disruption. While
its variance was also slightly higher (0.0427 versus 0.038),
the difference in both average shift and variability is rela-
tively small. Overall, the universal patch appears to perform
slightly better in terms of inducing shifts, though the differ-
ence is subtle, suggesting it could be a more effective tool
for disrupting model predictions in some cases.

While bounding box shifts sometimes occurred near the
patch, they were more often seen in areas distant from it, in-
dicating perturbations propagate beyond the patch’s vicin-
ity. This likely stems from DETR’s global self-attention,
which spreads patch-induced changes across the image.

Though detection confidence was not substantially re-
duced, the patch induced measurable instability in object
localization. These results highlight potential for stronger
disruption via refined patch optimization, such as stronger
or spatially-aware gradients, better initialization, or more
targeted loss functions.

5. Adversarial Attack Analysis Results

We evaluate robustness of a frozen, pretrained ViT model
under various adversarial attacks.



5.1. Baseline Results

Below is a baseline comparison of existing adversarial
attacks against the clean (no-attack) accuracy; measured as
described in §3.4.

However, the classification results for each individual
attack, as shown in Table 2, reveal a broader issue: the
base ViT model itself performs poorly under adversarial
conditions. Accuracy drops consistently across all 12 at-
tack types, falling from 87.1% (clean) to as low as 68-70%
for most perturbations—even for attacks the classifier was
trained to detect.

Attack Type | Accuracy | Correct

Clean 0.8713 948 /1088
FGSM 0.7089 772 /1089
PGD 0.6942 756 /1089
BIM 0.6887 750/ 1089
CwW 0.7016 764 /1089
EOTPGD 0.7043 76771089
APGD 0.7016 764 /1089
APGDT 0.7016 764 /1089
FAB 0.7016 764 /1089
VANILA 0.7016 764 /1089
GN 0.6961 758 /1089
DeepFool 0.7016 764 /1089

Table 2. Zero Shot Image Classification accuracy after different
attacks. Performance of Baseline Model: ViT

5.2. Evaluation

The baseline clean accuracy of the frozen pretrained
Vision Transformer (ViT) model stands at approximately
86.9%, demonstrating strong performance on unperturbed
inputs. However, when subjected to adversarial perturba-
tions, the model’s robustness degrades significantly across
all tested attacks.

Simple gradient-based attacks such as FGSM reduce the
accuracy to 40.0%, indicating a substantial vulnerability to
even single-step perturbations. More iterative and stronger
attacks like PGD and BIM are particularly effective, driv-
ing accuracy down to near-random levels (0.6% and 8.7%
respectively) and achieving attack success rates above 90%.
This confirms that the frozen ViT model is highly suscepti-
ble to adversarial examples crafted by iterative methods.

These results highlight the need for robust defense mech-
anisms, as the zero-shot ViT classifier lacks inherent re-
silience to adversarial inputs. The sharp contrast between
clean and adversarial accuracies underscores the gap in ro-
bustness and motivates subsequent investigations involving
adversarial training and fine-tuning.

6. Adversarial Detection and Diagnosis Results

This section evaluates the performance of our adversarial
defense pipeline in two stages: (1) detecting whether an in-
put is adversarial, and (2) diagnosing the type of adversarial
perturbation. The detection module acts as a binary clas-
sifier distinguishing clean and adversarial inputs, while the
diagnosis head classifies adversarial examples into behav-
ioral categories such as attention shifting and attenuation.

6.1. Performance Results

6.1.1 Adversarial Classifier

Task Train Acc | Val Acc
ViT + Classifier: 93.30% 87.63%
Table 3. Adversarial Detection
Attack  Accuracy Loss
apgd 0.9835 0.9724
apgdt 0.9835 0.9724
bim 0.9853 0.9616
clean 0.0156 5.0669
cw 0.9835 0.9724
deepfool 0.9835 0.9724
eotpgd 0.9853 0.9451
fab 0.9835 0.9724
fgsm 0.9862 0.9797
gn 0.9982 1.0079
pgd 0.9853 0.9403
vanila 0.9835 0.9724

Table 4. Accuracy/loss per Attack Type after Implementing De-
fence

As observed in Table 3, our adversarial binary classifier that
detects whether an image has undergone adversarial attack
achieves a commendable 87.63% training accuracy.

6.1.2 Diagnoser

To interpret the qualitative nature of adversarial behavior,
we introduce a lightweight MLP-based diagnoser trained
on CLS token embeddings extracted from the 6™ Trans-
former block. We first perform dimensionality reduction us-
ing PCA, followed by K-means clustering on a set of 2,016
adversarial examples. This yields three pseudo-labels repre-
senting distinct attention disruption modes: (1) spatial shift-
ing, where attention is diverted to irrelevant regions; (2) at-
tention attenuation, where overall attention strength is sup-
pressed; and (3) a miscellaneous class capturing clean-like
or ambiguous attention behaviors not clearly falling into the
first two categories.

These unsupervised cluster assignments serve as training
targets for the diagnoser, which is trained over 5 epochs.
The model achieves a final training accuracy of 86.95%



on 9,000 adversarial samples and generalizes with 99.75 %
accuracy on a held-out validation set of 12,000 samples.
This result suggests that the different adversarial disruption
modes are linearly separable in the CLS embedding space.

Clean Image Attention Adversarial Image Attention

Figure 4. Attention map before and after adversarial perturbation.

Attention from CLS Token (Block 6) — Behavior: Shifting

Figure 5. CLS-to-patch attention heatmaps from all heads in Block
6.

Figure 4 visualizes the attention distribution from the fi-
nal ViT block by projecting the average CLS-to-patch at-
tention scores onto the input image. In the clean image
(left), attention is centered on the dog’s face. In contrast,
the adversarial image (right) reveals attention shifted toward
background regions—demonstrating how perturbations dis-
tort the model’s internal focus.

Figure 5 shows a head-wise breakdown of CLS-to-patch
attention maps from Block 6 for the same adversarial ex-
ample. The diagnoser categorized this input as exhibiting
a shifting pattern. Each subplot corresponds to a different
attention head, illustrating how various components of the
model are affected. Brighter areas represent regions receiv-
ing higher CLS token attention.

6.2. Adversarial Defense Effectiveness

We evaluate our lightweight defense mechanism against
diverse torchattacks, comparing baseline ViT performance
with our adaptive gating approach.

Dramatic Improvements: Our defense mechanism
achieves remarkable performance gains across all attack
types. On FGSM attacks, accuracy improves from 70.89%
(baseline) to 98.62% (defense), representing a 27.73% ab-
solute improvement. Similarly, PGD attacks show improve-
ment from 69.42% to 98.53% (29.11% gain), and BIM at-
tacks improve from 68.87% to 98.53% (29.66% gain).

Strong Generalization: The defense demonstrates ex-
cellent generalization to unseen attacks. AutoAttack vari-

ants (APGD, APGDT) improve from 70.16% to 98.35%
(28.19% gain), while DeepFool accuracy increases from
70.16% to 98.35% (28.19% gain). Even sophisticated at-
tacks like FAB and C&W show similar improvements from
70% to 98%.

Consistent Robustness: Across all adversarial attack
types, our defense mechanism maintains accuracy above
98%, compared to baseline performance of 68-71%. The
defense shows particularly strong performance on gradi-
ent noise (GN) attacks, achieving 99.82% accuracy versus
69.61% baseline.

Trade-off on Clean Images: While our defense dramat-
ically improves adversarial robustness, it comes with a no-
table trade-off on clean image performance. Clean accuracy
drops from 87.13% (baseline) to 1.56% (defense), repre-
senting an 85.57% decrease. This suggests our adversarial
detector may be overly sensitive, frequently misclassifying
clean images as adversarial and applying unnecessary gat-
ing corrections. This trade-off reflects a common challenge
in adversarial defense—balancing robustness gains against
clean performance preservation.

Computational Efficiency: Despite this limitation, our
lightweight approach requires minimal additional computa-
tion compared to full adversarial training, while achieving
superior robustness across the entire torchattacks suite.

Results show that our cluster-aware adaptive gating con-
siderably improves performance on adversarial examples,
with consistent 25-30% accuracy gains across diverse attack
strategies, though at the cost of clean image performance.

7. Conclusion

This work addresses Vision Transformer vulnerability
to adversarial attacks through a lightweight defense mech-
anism that avoids expensive full model retraining. Our
cluster-aware adaptive gating system achieves 25-30% ac-
curacy improvements on adversarial examples with mini-
mal computational overhead, demonstrating significant ad-
vantages over traditional adversarial training approaches
that require fine-tuning entire models.

The unsupervised behavior discovery enables effective
generalization to unseen attack types, while selective at-
tention gating in higher layers provides computational ef-
ficiency. However, our current implementation shows a
trade-off between adversarial robustness and clean image
performance, highlighting the need for improved adversar-
ial detection precision.

Future work will explore additional lightweight defense
methods that preserve clean performance while maintaining
robustness gains. We plan to investigate alternative atten-
tion conditioning strategies, ensemble approaches, and ex-
tensions to other ViT architectures. Our work demonstrates
that lightweight, attention-based defenses offer a promis-
ing direction for practical adversarial robustness without the



computational burden of full adversarial training.
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