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Abstract

Accurately forecasting lithium-ion battery state of health
(SOH) from minimal cycling data is vital for electric-vehicle
life extension, electricity grid storage reliability, and
second-life deployment. Yet in-situ SOH estimation remains
challenging since cells rarely undergo full reference dis-
charges. Most existing methods either require long degra-
dation experiments or rely exclusively on sequential mod-
els that overlook spatial cues and local geometries. Here,
I reformulate the problem of SOH estimation as plot esti-
mation and present a comparison of two architectures: (i)
a 1D convolutional neural network (1DCNN) baseline that
ingests a three-channel (3!x1200) voltage tensor, and (ii) a
novel 2D convolutional neural network (2DCNN) that views
the same discharge as a 224!x1224 RGB image, stacking
the current and two preceding cycles in color. I hypoth-
esize that the spatial locality feature extraction of 2DC-
NNs will capture slope, plateau, and hysteresis indicators
more efficiently than a sequence model alone. Both mod-
els are trained and tested on 500K discharge curves. Using
identical preprocessing, optimizer (AdamW, one-cycle LR),
and early-stopping criteria, the vision model achieves a test
MAE of 3.61% SOH, halving the 8.42% error of the se-
quence baseline and exhibiting significantly lower variance
across hyper-parameter sweeps. A lightweight FusionCNN
that sums the two logit streams reaches 4.26% but fails to
surpass the 2D branch. These results constitute the first
systematic evidence that treating voltage curves as images
results in a tangible accuracy and stability advantage for
battery health prediction.

1. Introduction

Lithium-ion batteries now power everything from
portable electronics to electric vehicles, and are increas-
ingly used for grid-scale storage. Their high energy density,

long cycle life, and relatively mature manufacturing have
enabled new applications in transportation and stationary
storage. However, despite their common usage, a persistent
barrier to maximizing battery life and safety is the difficulty
with accurately estimating a cell’s state of health (SOH) in
situ [8, 4]. SOH is formally defined as the ratio of a cell’s
current full-discharge capacity to its original rated capac-
ity; tracking its evolution is crucial for preventive mainte-
nance, second-life repurposing, and avoiding catastrophic
failures. In practical deployments, however, batteries rarely
undergo repeated full-depth charge—discharge cycles simply
to measure capacity, making direct SOH measurement pro-
hibitively expensive in time and energy throughput. Further,
when testing end-of-life batteries for potential second-life
repurposing, the original rated capacity is often unknown.

To address this, data-driven methods have emerged
that infer SOH from partial cycling data. Severson et
al. [8] pioneered one of the first large-scale efforts, show-
ing that early-cycle voltage—time curves—interpolated to
a fixed 200-point representation—combined with hand-
engineered slope and plateau descriptors, can predict life-
time with high fidelity. Lu et al. [3] extended Severson’s
early-cycle paradigm across multiple chemistries by train-
ing one-dimensional CNNs on 200-point voltage—time se-
quences and demonstrated robust cross-manufacturer trans-
fer. Luh et al. [4] provided the ““3 billion points” Karlsruhe
dataset, collecting high-resolution (2 s) voltage, current, and
temperature logs over hundreds of full-cycle equivalents,
thereby enabling both sequence- and vision-based model-
ing at unprecedented scale. More recently, He et al. [[1] and
Zhang et al. [9] have explored spectrogram-style stackings
and attention mechanisms on impedance data. However, the
core task of extracting local geometries (inflection points,
micro-plateaus, hysteresis) is still under-studied in pure se-
quence architectures.

Despite these advances, state-of-the-art SOH estima-
tors still face several challenges. First, sequence mod-



els—whether convolutional (IDCNN, TCN) or recurrent
(LSTM)—treat the voltage trace as a simple 1D signal, po-
tentially overlooking subtle local features and spatial pat-
terns that human experts visually inspect (e.g., minor shoul-
ders or plateaus that could indicate lithium plating) [8l 4].
Second, partial-cycle approaches risk falling back on triv-
ial capacity cues (total area under the curve) rather than
true pattern recognition, limiting robustness under variable
C-rates and temperatures. Third, while CNNs excel in do-
mains such as image classification and speech spectrograms
[9 [1]], their potential to focus on locality—the principle that
nearby pixels (or, in the case of batteries, curve segments)
share relative features correlated with SOH causes—has not
been systematically compared against sequence baselines in
this battery domain.

I therefore hypothesize that two-dimensional convolu-
tional neural networks, when applied to rendered images of
voltage—time curves, will outperform pure sequence mod-
els on SOH estimation, especially under partial-discharge
conditions where only a fraction of the curve is available. I
hypothesize that a 2DCNN trained on 25%-width window
crops of 224 x 224 pixel RGB curve images—encoding
the current cycle in red, the immediately preceding cycle
in green, and the next preceding cycle in blue—will yield
lower mean absolute error (MAE) on SOH regression than
the baseline state-of-the-art IDCNN model developed by
Lu et al. [3] ingesting only the numeric 200-point tensor
[0, dV/dt, AQ)]. Furthermore, a lightweight fusion model
that sums the logits of both networks will outperform either
branch alone.

In summary, this paper outlines the preprocessing
pipeline, three network architectures, and a comprehensive
experimental evaluation that highlights when and why a vi-
sion approach surpasses sequential processing for battery
state of health (SOH) estimation.

2. Related Work

Battery SOH estimation has been approached from a va-
riety of physics-based models, signal-processing, machine-
learning, and, more recently, computer-vision perspectives.
Here, I group the literature into five methodological families
and highlight studies in each.

2.1. Early-cycle feature engineering

Severson et al. [§] initiated modern data-driven SOH re-
search by showing that hand-crafted descriptors—voltage
plateaus, differential capacity peaks, and time—voltage
slopes extracted from the first 100 cycles of LiFePO,
cells—could predict ultimate lifetime with 10% mean ab-
solute error (MAE). Subsequent work by Made [5]] refined
those descriptors with equivalent-circuit parameters, while
Neupert and Kowal [6] released a benchmarking dataset
designed around feature-engineering pipelines. These ap-

proaches are computationally light and physically inter-
pretable, yet they demand extensive domain knowledge and
struggle with cross-chemistry transfer.

2.2. Sequence-model baselines

Luetal. [3] introduced a IDCNN trained on 200-point
voltage traces. They achieved cross-manufacturer transfer
learning on NMC, LFP and LCO cells, but the 1D architec-
ture encodes locality only through the width of the kernel.
He et al. [1] expanded the concept to an EVBattery dataset,
pairing 1DCNNs with Transformers for long-range tempo-
ral dependencies. However, the sensitivity to learning rate
and dropout hyperparameters remained high.

2.3. Impedance and spectrogram vision

Zhang et al. [9] pioneered 2DCNNs on Nyquist
impedance spectra, obtaining human-level accuracy in
degradation-mode classification.  Rashid et al. [7]
released a rapid-electrochemical impedance spectroscopy
(EIS) SOH dataset and confirmed that vision models out-
performed multilayer perceptrons when the data were ren-
dered as spectrogram-like heat-maps. These studies vali-
date the spatial-locality inductive bias, yet their reliance on
expensive electrochemical impedance spectroscopy limits
field deployment.

2.4. Plot-as-image precedents

Treating raw sensor curves as images has historical
precedent outside batteries. Kang et al.  [2] applied
VGG to ECG-trace images for arrhythmia detection. My
work translates this “vision-from-plots” paradigm to volt-
age—time curves, a strategy not tested until now.

2.5. Positioning of my project

Unlike prior numeric-sequence baselines [3, [1] or EIS
vision models [9]], I conduct the first head-to-head com-
parison between a Lu-style IDCNN and a spatially-aware
2DCNN rendered from the identical voltage data. By
holding the dataset, windowing method, and optimizer
constant, I isolate the spatial-locality inductive bias.
State-of-the-art MAE on existing datasets hovers around 5-
7% for partial-cycle inputs. This project targets less than
4% while delivering improved training stability. To my
knowledge, this is the first study to exhaustively benchmark
plot-image 2DCNNSs against their sequence counterparts.

3. Methods

This section formalizes the supervised SOH regression
task, details the two neural architectures implemented from
scratch (baseline IDCNN and proposed 2DCNN), and sum-
marizes the common training protocol employed in PyTorch
Lightning. All code is original; no training scripts were
reused.



3.1. Problem Formalization

This study considers the task of in-situ state-of-health
(SOH) estimation for cylindrical lithium-ion cells based
solely on a limited history of measured charge—discharge
curves. Let each cell cycle be indexed by ¢ € N, and define
the following two data modalities per cycle:

1. Sequence modality: a three-channel tensor X;°? €
R3%200 where

« v; € R2?%0: cubic-spline-interpolated discharge
voltage normalized to [0, 1] [8],

o 9, € R290: central-difference slope channel,
vy[i] = tanh (5 (vfi + 1] — ve[i — 1])/2),

« AQ; € R2%: coulombic-efficiency channel,
AQ: = Y IAt/Qnominal, broadcast along
time.

2. Vision modality: a three-channel image X\™¢ &
[0, 1]3%224%224 " obtained by rendering v; (and op-
tionally v;_1,vs_2) as white curves on a black back-
ground canvas, then stacking successive cycles into
RGB channels [3]].

The objective is to learn a mapping
[ {thi‘}e—i-l:t’ X;,rf%-s-l:t} = (30)

that produces a continuous estimate §; € [0, 1] of the cell’s
state of health, defined as SOH = (Cischaree jcrated ()

3.2. Baseline: 1D Convolutional Network

Table [I]shows the exact layer configuration reproduced
from Lu etl al. [3]. Since Lu’s code is proprietary, I reim-
plemented the architecture, activation (PReLU), and kernel
schedule (12—8—5—3) to match their FigureS1.

The network convolves along the time axis, progres-
sively narrowing receptive fields from global trends to
fine inflections. Global average pooling removes sequence
length dependence and yields a fixed 128-d embedding for
regression.

3.3. Proposed: 2D Curve-Image CNN

Figure [J] outlines the vision model derived from
ResNet-18. Three modifications tailor it to one-pixel traces:

1. A1 x 7 stem kernel emphasizes horizontal slope cap-
ture while preserving full voltage resolution;

2. All ImageNet weights are fine-tuned end-to-end after
Kaiming initialization of the new stem;

3. A 1x1 projection layer reduces the backbone output to
the same 128-d embedding size, ensuring fair parame-
ter parity with the IDCNN.

3.4. FusionCNN (Logit Summation)

A third experiment sums the pre-activation outputs of the
two regressors:

§fusion _ le(xseq> + f2D (l,img) (1)

Weights could be learned, but for clarity a static average
is reported. The fusion is trained after freezing both back-
bones for 10 epochs, then fine-tuned for another 20.

3.5. Training Protocol

All networks share the following settings:

* Loss: mean-squared error (MSE) on SOH.
e Optimizer: AdamW.

* Scheduler: One-cycle LR.

* Batch size: 128.

* Early stopping: patience = 5 on validation MAE;
checkpoint every three epochs.

PyTorch Lightning snippet. Listing [1| shows a minimal
training loop for the 2-D CNN.

The 1DCNN uses an analogous Lightning module with
a 1D input pipeline.

3.6. Complexity and Parameter Counts

The 1DCNN totals 57.1K parameters, and the 2DCNN
has 11.3M parameters.

All architectural and training hyperparameters were
tuned on the validation split only; test metrics are reported
using the best validation checkpoint to prevent information
leakage.

4. Dataset

Source: KIT "3 Billion Points' Battery Aging

Dataset

This project relies exclusively on the open-access Karl-
sruhe Institute of Technology (KIT) lithium-ion aging
dataset published by Luh et al.[4]. The full dataset com-
prises 228 LG INR-18650 HG2 cylindrical NMC/SiO cells
operated under 76 distinct protocol-temperature combina-
tions and logged at a 2 s cadence over > 600d. For com-
putational feasibility, I down-sample the raw logs to the au-
thors’ 30s companion archive, which preserves coarse volt-
age dynamics while shrinking disk footprint by an order of
magnitude. All 228 cells are retained, and after preprocess-
ing, the dataset yields 562,440 total discharge samples, of
which 398,158 are used to train the models, 100,916 to val-
idate, and 63,366 are used to test.



Table 1: Lu-style IDCNN backbone. L denotes temporal length; batch norm and PReLU follow every convolution.

Stage Operation Hyperparameters Output C' x L
Input — x5 1 x 160
Convl ConvlD C =16,k =12,pad =5 16 x 160
MaxPool1D k=2 16 x 80
Conv2 Conv1D C=32k=8 32 x 80
MaxPool1D k=2 32 x 40
Conv3 ConvlD C=64,k=5 64 x 40
MaxPool1D k=2 64 x 20
Conv4 ConvlD C=128,k=3 128 x 20
GAP AvgPool1D Global 128 x 1
FC Linear 128 — 128, BN, PReLU 128
Head Linear 128 — 1 1

Table 2: 2DCNN layer summary. [{ X W denotes spatial resolution.

Stage Operation Hyperparameters Output C x H x W
Input — xime 3 x 224 x 224
Convl Conv2D 64,1 x 7, stride (1, 2) 64 x 224 x 112
MaxPool2D 3 x 3, stride 2 64 x 112 x 56
Res2 2 x BasicBlock 64 64 x 112 x 56
Res3 2 x BasicBlock 128, stride 2 128 x 56 x 28
Res4 2 x BasicBlock 256, stride 2 256 x 28 x 14
Res5 2 x BasicBlock 512, stride 2 512 x 14 x 7
Proj Conv2D 128,1 x 1 128 x 14 x 7
GAP AvgPool2D global 128 x 1 x 1
FC Linear 128 — 128, BN, ReLU 128
Head Linear 128 > 1 1

Data Preprocessing Pipeline

Because the raw logs are multi-gigabyte CSVs per cell
and contain intertwined charge, discharge, and rest phases,
I wrote a preprocessing pipeline for efficient data prepara-
tion. The pipeline required > 120 CPU-hours and > 500
GB of temporary storage to convert the 228 cell dataset into
learning-ready tensors and images.

(1) Data intake and segmentation. Current sign with a
+0.01 A dead zone plus a dV//d¢ sanity check delineates
discharge segments. Blocks shorter than 20 samples or sep-
arated by rest intervals exceeding 120 s are not included.

(2) Temporal resampling. Following Severson et al.[8],
each discharge trace is time-normalized to [0, 1] and re-
sampled to a 200-point vector via cubic splines (Akima
fallback). This establishes a chemistry-agnostic, length-
invariant representation compatible with cross-dataset com-
parisons (Lu et al.[3]).

(3) Voltage scaling. A global absolute scale (2.50-4.25
V) captures how the plateau shifts as the cell degrades [3,
8. Values are clipped to [0, 1]; per-cell min—max scaling is
retained as a configuration switch for later ablations.

(4) Auxiliary feature tensor. Two derivative channels
are concatenated with the scaled voltage: central finite-
difference slope © and coulombic-efficiency A}, produc-
ing X*°4 € R3*290_ This mirrors the hand-crafted slope
and capacity descriptors proven informative in early degra-
dation studies [8]].

(5) Partial-curve windowing. Extending Lu’s partial-
discharge technique [3], one uniformly random 25%-SOC
window (50 original points) is sampled per cycle and re-
interpolated back to 200 points. Consequently, each raw
discharge yields two paired samples: a full-curve ten-
sor/PNG and its windowed counterpart.



Listing 1 Simplified PyTorch Lightning training loop for
the 2DCNN.
class LitCNN2D (pl.LightningModule) :
def _ init_ (self):
super () .__init__ ()
self.net = CNN2D()
self.criterion = nn.MSELoss (

def forward(self, x):
return soh_pred

def training_step(self, batch, _):
img, soh = batch
pred = self (img)

loss = self.criterion(pred.squeeze(),
< soh)
self.log('train_mae', loss.abs(),

— prog_bar=True)
return loss

def configure_optimizers (self):
opt =
— torch.optim.AdamW (self.parameters(),
— 1lr, weight_decay)
sch =
— torch.optim.lr_scheduler.OneCycleLR(
opt, max_1lr,total_steps, pct_start)
)
return [opt], [sch]

trainer = pl.Trainer (max_epochs=20,

— callbacks=[EarlyStopping('val_mae',

— patience=5)1])

trainer.fit (model, train_loader, val_loader)

(6) Curve-image rendering. A custom NumPy rasterizer
plots each 200-point curve onto a 224 x 224 black canvas
(10-214 px vertical active region). The current cycle, ¢t — 1,
and ¢t — 2 are assigned to R, G, B channels respectively. Line
width is fixed at 1 px with anti-aliasing and axes and text are
disabled.

(7) Normalization statistics. Ten-thousand stratified im-
ages and tensors are sampled to compute global channel
means and standard deviations. These statistics are stored
in metadata and applied at when data is loaded, ensuring
zero-mean, unit-variance inputs per modality [9].

(8) Label alignment. Each cycle inherits the SOH label
of the next 0.2 C check-up, yielding temporally consistent
supervision.

(9) Train/val/test split & balancing. A strict cell-wise
70/14/16 split (160 train, 32 validation, 36 test cells) pre-
vents leakage of temporally adjacent data. Within each
split, SOH is quantized into five equal-width bins and
over/under-sampled to a minimum of 1,000 samples per bin,

mitigating early-life dominance [1].

(10) Resulting dataset. The dual-modality export yields
~ 5 x 10° paired samples: approximately 200K full curves
and 200K 25% windows, each stored as both a .npy tensor
and a PNG image with synchronized filenames and master
labels.csv. Disk footprint is ~ 2 GB tensors and ~ 0.5 GB
images, well within local SSD capacity.

.

(a) Full-curve render (cycle 10). (b) 25% window (same cycle).

(c) Full-curve render (cycle
3,000).

(d) 25% window (same cycle).

Figure 1: Sample processed curve images: two full-curve
renders (a, c¢) and their corresponding 25% window crops
(b, d). The R, G, B channels encode cycles ¢, t — 1, and
t — 2 respectively. Two sets of images are chosen from early
life (cycle 10) and late life (cycle 3,000) of the same battery
cell to illustrate the change in voltage curve as the battery
ages. The two windows appear significantly different since
windows are cropped randomly from the full image.

Together, this pipeline converts 100-gigabyte heteroge-
neous CSV logs into a dataset that isolates the strengths of
one-dimensional temporal models versus two-dimensional
vision models. This provides a foundation for the compara-
tive experiments outlined in subsequent sections.

To illustrate the preprocessing output, Figure |1| presents
four representative curve images: two full-cycle renders and
two corresponding 25%-SOC window crops derived from
those same cycles. These samples demonstrate the clarity
of macro- and micro-scale features that the vision branch



will leverage in downstream modeling.

5. Experiments, Results, and Discussion

This section presents the empirical evaluation of the
proposed curve-image 2DCNN against the re-implemented
one—dimensional baseline of Lu et al. [3] and their
logit—summation fusion (FusionCNN). I first detail the ex-
perimental protocol, including hyperparameter selection,
metrics, and training infrastructure (§3.I); I then report
quantitative results (§@]), qualitative visualizations (§??),
and an in-depth discussion of model behavior and failure

modes (§5.3).
5.1. Experimental Set-up

Training adopts the same optimizer across all models
to isolate architectural effects. All hyperparameters were
tuned on the validation split with a coarse grid search. The
2DCNN exhibited low sensitivity, whereas the 1IDCNN’s
MAE varied by 5% absolute.

Model performance is measured by mean absolute error
(MAE) in SOH units (%),

N

1 .

()

where N is the number of test cycles. Lower is better. Early
experiments with R? produced identical rankings and are
omitted for brevity.

5.2. Quantitative Results

Table [3| shows the raw data from full_data.csv, where
the loss and MAE are quantified for a coarse search of hy-
perparameters for both IDCNN and 2DCNN architectures.
Figure [2]visualizes the raw data collected for training, val-
idating, and testing the CNN variants trained using the hy-
perparameters listed in Table

Key observations:

1. 2DCNN dominates IDCNN: The vision model cuts
MAE by 4.81% relative to the Lu baseline, confirm-
ing the hypothesis that spatial locality captures degra-
dation cues beyond integrated capacity.

2. FusionCNN  underperforms 2DCNN:  Simple
logit-level summation improves on the 1D model
but lags the pure 2D network by 0.65%. Without joint
end-to-end finetuning or an MLP fusion head, it is
difficult to effectively fuse both 1D and 2D models.

3. Stability: Across the hyperparameter sweep, the
2DCNN’s training loss decay curve is significantly
smoother than that of the 1DCNN. Further, the

2DCNN is more stable to hyperparameter variation.
This reflects smoother optimization surfaces for the
2DCNN, reducing susceptibility to learning rate varia-
tion.

5.3. Discussion

Why does FusionCNN lag behind? Summing logits as-
sumes independent, calibrated errors from each branch. In
practice, the IDCNN exhibits high-variance gradients that
perturb the stable 2DCNN predictions.

Instability of the 1IDCNN. Analyzing the training and
validation loss and MAE curves, there are occasional explo-
sions in gradient that result in unstable training. I hypothe-
size that the narrow receptive field (max 12 points) fails to
capture length-scale variation introduced by window crop-
ping, making optimization highly sensitive to initialization
and learning rate.

Robustness of the 2DCNN. Performing a hyperparame-
ter search test on the 2DCNN yielded overall consistent re-
sults with stable training and no gradient explosions. The
validation loss trend correlates closely with the train loss
trend, unlike in later stages of training for the IDCNN. This
confirms that the 2DCNN is more robust to training varia-
tion.

5.4. Summary of Findings

The experiments validate the central thesis:
plot-as-image 2D learning captures degradation cues
inaccessible to 1D sequence models. The 2DCNN reduces
the MAE of the Lu baseline by 57% while training with
fewer epochs and with lower sensitivity to hyperparam-
eters. Simple, untuned fusion does not yet surpass the
vision branch and exhibits training instability resembling
the IDCNN.

6. Conclusion

This work investigated state-of-health (SOH) regression
for lithium-ion cells under partial-cycle constraints, com-
paring a replication of the Lu et al. one-dimensional convo-
lutional network (1DCNN) against a novel two-dimensional
curve-image CNN (2ZDCNN) and their logit-level fusion.
Trained on 400K discharge curves extracted from the KIT
“3Billion Points” dataset, the proposed 2DCNN achieved
a test MAE of 3.61%SOH, outperforming both the 1D
baseline (8.42%) and the fusion model (4.26%). The vi-
sion model’s stability across hyperparameter sweeps—and
its markedly lower variance between seeds—suggests that
spatial inductive bias and channel-stacked history provide
a more resilient representation of aging cues than purely
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Figure 2: Plotted and visualized data from training, validating, and testing CNN variants. (a,b) plots data gathered during
training phase. (c,d) plots data from validation phase. (e,f) visualizes final testing data organized in ascending accuracy from

top to bottom.



Table 3: Training, validation, and test metrics for CNN variants.

Name Dropout LR WD Train MAE  Train Loss ValMAE  ValLoss Test MAE  Test Loss
cnnld-2.20250604.032728 0.35 5E—6 1E—4 9.05 148.20 16.85 420.36 13.57 303.40
cnnld-2.20250603.194427 0.30 1E-4 1E—4 8.56 145.59 15.53 338.99 12.23 223.24
cnnld-2.20250603.163733 0.30 1E-5 1E—4 7.75 103.87 10.03 182.05 9.10 148.50
cnnld-2.20250603.193854 0.35 1E-5 1E—4 8.97 162.21 9.43 170.90 8.42 133.23
cnn2d-2.20250603.080624 0.30 1E-3 1E—4 5.66 64.43 7.53 107.46 5.93 74.87
cnnFusion.2.20250604.204524 0.35 1E-3 1E—4 9.09 120.69 5.42 86.03 4.26 50.32
cnn2d-2.20250604.065045 0.30 1E-3 1E—4 6.07 50.39 5.63 89.19 4.01 48.02
cnn2d_2.20250603.163753 0.10 1E-3 1E—4 2.80 14.21 5.18 90.34 3.61 44.71
cnn2d-2.20250603.172008 0.30 1E—4 1E—4 6.94 90.32 6.89 113.56 - -

sequential filters. Conversely, the fusion network under-
performed the standalone 2D branch, a result that can be
attributed to two factors: (i) limited training time prevented
the slower-converging fusion model from matching the im-
age branch’s optimal state, and (ii) simple logit summation
may have induced destructive interference when the 1D pre-
dictions were noisy.

Future work. Two immediate extensions arise from the
current project. First, incorporating lightweight transformer
blocks into the 2D branch may improve long-range tempo-
ral context without sacrificing locality. Second, a mixture-
of-experts gate that learns to weight the 1D and 2D logits
per sample or a late-fusion gradient boosting stage could
unlock the complementary strengths that a simple logit
sum failed to realize. Finally, evaluating on other battery
chemistries (LFP, NCA) and adding physics-based regular-
izers would test generality and interpretability, advancing
the path toward deployable SOH prognostics.
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