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Abstract

Retrieval of events from driving scenarios videos is es-
sential to improve the efficiency of developing autonomous
driving systems. In this project, we experiment with ob-
ject detection with tracking method, as well as a vision-
language retrieval model to extract the clip of interested
driving scenarios from long test drive video. The object
detection and tracking model effectively identifies object-
centric scenarios by localizing and maintaining object iden-
tities across frames. In contrast, the vision-language re-
trieval model is capable of retrieving both object-level and
scene-level scenarios based on natural language queries,
leveraging cross-modal semantic alignment between visual
content and textual descriptions.

1. Introduction
Modern autonomous driving systems generate a large

amount of video data from test drives, while efficiently nav-
igating and analyzing the recorded videos has remained
challenging due to involved efforts to label events like
”crossing pedestrians” in long drives. Manual review has
proven to be time-consuming and error-prone. This project
aims to automate event retrievals by developing a trained
deep neural network to extract the most relevant video clips
from a long-drive test video. The challenge lies in video
scenario understanding and classification, and we believe
this feature would facilitate developers’ scenario-specific
debugging in self-driving systems.

We develop and evaluate two distinct models: an ob-
ject detection with tracking model and a vision-language
retrieval model.

For the object detection and tracking model, the input
consists of sequential frames extracted from video clips. We
employ a pipeline that integrates YOLO [6] for object de-
tection with Deep SORT [9] for multi-object tracking, out-
putting the classification of each clip based on the detected
and tracked object patterns over time.

In contrast, the vision-language retrieval model is de-
signed to align video clips with natural language descrip-

tions in a shared embedding space through contrastive
learning. This model combines VideoMAEForVideoClas-
sification [7], a transformer-based video encoder pretrained
via masked autoencoding, with the CLIP [5] text encoder,
pretrained for image-text alignment. Given a video and a
textual query, the model retrieves the most semantically rel-
evant clips by computing similarity scores between video
and text embeddings.

2. Related Work
Video scenario understanding starts with the detection

of objects in the image frame. There are many state-of-
the-art models for objects detection, such as YOLO [6] and
transformer based model DETR [4]. However, object detec-
tion is not enough to understand the scenarios. By adding
object tracking after detection, the model can capture sce-
narios requiring dynamic information of objects, such as
a pedestrian is walking by in front of our vehicle. Popu-
lar object tracking models include real-time tracker SORT
[2] and ByteTrack [12]. Some other scenarios, such as
intersection, are not purely determined by objects and re-
quire deeper scene understanding. Some recent video un-
derstanding models offer state-of-the-art performance, such
as VideoMAE [7] and ViViT [1]. In order to enable text
query, CLIP [5] presents a framework to align visual and
textual representations. Below we list several literature re-
viewed in details.

2.1. Transformer based integrated model

VideoMAEForVideoClassification [7] proposes a self-
supervised learning framework for video representation
learning based on masked autoencoding. The model ex-
tends the Masked AutoEncoder (MAE) paradigm from im-
ages to videos by randomly masking a high proportion of
video tokens and training a transformer to reconstruct the
missing content. This approach efficiently captures both
spatial and temporal dependencies with reduced compu-
tational cost. VideoMAE achieves state-of-the-art perfor-
mance on multiple video classification benchmarks, demon-
strating strong generalization and scalability in learning
spatiotemporal features without relying on labeled data.
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CLIP [5] presents a contrastive learning framework that
jointly trains an image encoder and a text encoder to align
visual and textual representations in a shared latent space.
Trained on large-scale image-text pairs, CLIP enables zero-
shot transfer to a wide variety of visual recognition tasks
by leveraging natural language supervision. Its success
demonstrates the effectiveness of vision-language pretrain-
ing in bridging semantic gaps between modalities.

Combining these approaches, the VideoMAE and CLIP
integrated model leverages VideoMAE’s powerful spa-
tiotemporal video embeddings alongside CLIP’s language-
grounded textual embeddings. This fusion facilitates cross-
modal video retrieval and scene understanding by aligning
video clips with natural language descriptions in a shared
embedding space.

2.2. Object detection and tracking integrated model

A different way of performing video classification is
to utilize the benefits of advanced object detection model
and fuse it into an efficient tracking model. YOLOv8, ex-
plained by Muhammad et al. (2024) [10] and Varghese et al.
(2024) [8] has been proved to be an effective and efficient
online object detection method, which introduces architec-
tural enhancements such as anchor-free detection head and
improved backbone networks compared to its earlier ver-
sions. While object detection identifies objects in individ-
ual frames and it is critical in the pipeline, tracking ob-
jects across frames is crucial for understanding temporal
dynamics. Tracking model such as SORT (Simple Online
and Realtime Tracking) [2] and Deep SORT [9] use the de-
tected objects information and assign consistent identities
and tracks their movements across frames. With the cap-
tured movement of objects over frames, we can integrate
features such as object states and counts and stack them into
feature vector and feed into fully-connected layers for scene
classification tasks.

3. Methods

We develop and evaluate two methodologies in paral-
lel. The first method is a transformer-based vision-language
model that integrates a video understanding encoder with an
image-text alignment framework. The second method is an
integrated pipeline combining object detection and multi-
object tracking. Detailed descriptions of both approaches
are provided below.

3.1. Vision Language Model

We propose a combined model integrating a Video Vi-
sion Transformer (ViViT)-based Variational Autoencoder
(VAE) [7] with a CLIP [5] text encoder to perform video-
text retrieval tasks. The model jointly learns aligned video
and text embeddings for natural language video retrieval.

• Input:

– Video clips V = {v1, v2, ..., vB}, each clip con-
taining T frames, B is batch size.

– Corresponding text queries Q = {q1, q2, ..., qB}.

• Output:

– Embeddings in a shared latent space: video em-
bedding zv ∈ Rd and text embedding zq ∈ Rd

The framework includes three components, including video
encoder, text encoder and projection head. The architecture
can be viewed as below:

Figure 1. Vision language scene retrieval pipeline

The video encoder is based on a ViViT architecture
wrapped inside a Variational Autoencoder framework. It
encodes input frames V into latent features zv .

zv = V AEvideo(V )

We use a pretrained CLIP text encoder to embed natural lan-
guage queries q into the same d-dimensional latent space.

zq = CLIPtext(q)

Lastly, both zv and zq are projected into a common embed-
ding space via learnable projection heads fv and fq .

hv = fv(zv), hq = fq(z1)

The outputs hv , hq are normalized to unit vectors for cosine
similarity computation.

We then train the model to maximize the similarity be-
tween matching video-text pairs and minimize similarity
for mismatched pairs via a contrastive learning objective
through contrastive loss. Given a batch of size B, the simi-
larity matrix is computed

Sij = hT
vi
hqi , i, j ∈ {1, ..., B}

The loss is symmetrized cross-entropy loss:

Lcontrast =
1
2B

∑B
i=1(lCE(Si,:, i) + lCE(S:,i, i))
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where lCE(., i) is the cross-entropy loss treating the i-th pair
as the positive sample.

The model is fine-tuned on a custom dataset (refer to
Section 4) by unfreezing only the final two transformer lay-
ers of the ViViT backbone (pretrained via VideoMAE[7])
and the CLIP ViT-B/32 [5]text encoder, along with the pro-
jection head. The projection head is implemented as a
one linear layer with 512 units, projecting the [CLS] to-
ken output from ViViT (of dimension 768) to a shared 512-
dimensional embedding space, which is aligned with the
CLIP text embedding space. All other parameters are frozen
to retain pretrained representations.

3.2. Detection and Tracking Model

Alternatively, we could obtain the desired scene by clas-
sifying the provided video clip. We propose an integrated
method that takes advantage of YOLO[11] as the detection
model. The detected per-object information including the
class, bounding box, and confidence are then passed to the
DeepSORT[9] model that performs multi-object tracking,
which maintains consistent object IDs over frames. In this
step, each object is tracked using a Kalman filter assuming
a constant velocity model for motion prediction. From the
tracked object data, we crafted a feature extractor that sum-
marizes each object’s motion state over frames and concate-
nate into a fixed-size feature vector, which is then passed to
a MLP head to predict the scene label:

Figure 2. Detector-tracker scene classification pipeline

3.2.1 Detection

The pipeline begins with object detection and we used
YOLOv12 in this experiment as it has been proven to be
efficient and fast. Each video frame is processed sequen-
tially in a single forward pass, generating class labels (e.g.
car, pedestrian), bounding boxes, and confidence scores for
detected objects. By filtering detections below a confidence
threshold (e.g. 0.5), the system retains only reliable object

candidates for subsequent racking. For simplicity, we have
limited our interests of object classes to be [”person”, ”bi-
cycle”, ”car”, ”motorcycle”, ”bus”, ”truck”] so other types
are dropped in the detection process.

3.2.2 Tracking

DeepSORT extends the detection results by associating ob-
jects across frames, enabling consistent tracking in dynamic
scenes. It integrates a Kalman filter for object motion
estimation which assumes a constant velocity model for
frame-to-frame prediction. Meanwhile, DeepSORT lever-
ages deep appearance descriptors to identify objects, where
a feature vector of size 128 is generated for each tracked ob-
ject. The Kalman filter estimates an object’s future position,
while a Hungarian algorithm matches detections to existing
tracks using both motion and appearance metrics hence as-
signs a consistent ID to the same object. In this experiment,
we have limited the maximum number of tracked objects to
be 5 and a minimum number of 10 frames for an object to
appear to be considered relevant in a clip.

3.2.3 Feature Extraction

A custom feature extraction module aggregates spatio-
temporal patterns from all tracked objects. For each con-
firmed track, following state is reported:

vi = (ui, vi, γi, hi, ẋi, ẏi, γ̇i, ḣi)

which contains bounding box center (u, v), aspect ratio γi,
height h, velocities (ẋi, ẏi). We defined the following fea-
ture vector for each object:

fi = (classi, p̄xi
, p̄yi

, v̄xi
, v̄yi

, d̄i, agei)

where classi is its class ID, p̄xi , p̄yi and (v̄xi , v̄yi) are its
mean velocity and position across frames, respectively. d̄i
is the mean distance to the origin. Since all inputs are col-
lected from a front camera, the origin is defined to be at the
middle of bottom edge of each image. agei indicates the
number of frames an object appears in a clip:

p̄x =
1

T

∑
t

x1 + x2

2
, p̄y =

1

T

∑
t

y2

v̄x =
1

T − 1

∑
t

pxt − pxt−1

frame rate
, v̄y =

1

T − 1

∑
t

pyt − pyt−1

frame rate

These features are expected to capture an object’s behaviors
such as direction of motions and proximity to the ego vehi-
cle. To handle variable object counts per scene, we choose
the top-k closest tracks by distance, and zero-padding en-
sures fixed-dimensional feature vector. This yields a 35-
dimensional vector (5 tracks x 7 features), encapsulating the
scene’s dynamic context while remaining robust to transient
detections.
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3.2.4 Classification

The final scene classification is performed by a MLP with
one hidden layer of 128 units. ReLU is used as the acti-
vation function and dropout regularization is used. It maps
the feature vector to a probability distribution over prede-
fined scene classes. During training, cross-entropy loss with
Adam optimizer are used. Its simplicity ensures efficient in-
ference and makes it suitable for real-time deployment.

4. Dataset
We used front-facing camera video frames from 1,000

driving scenes from the nuScenes dataset [3]. Each image
frame has size 1600 × 900. We manually extracted and la-
beled 200 clips in total. The data is partitioned into training,
validation, and test sets. To fine-tune both models, we ex-
tract short video clips consisting of 16 consecutive frames
that correspond to scenarios of interest. Each clip is anno-
tated with a categorical label from one of nine target classes
and a natural-language description summarizing the scene.
These categories represent the key driving scenarios most
relevant to our study, listed in 1.

class description
car following Ego is following a vehicle
car merging Vehicle merging into ego lane

car oncoming Oncoming direction has vehicle
stationary object ahead Static object exists in front of ego

pedestrian crossing People cross in front of the ego
pedestrian nearby Pedestrian is nearby ego vehicle

free traffic No traffic in the driving scenario
complex Complex scenario

Table 1. Dataset Classification

An example of one clip with label is shown in 3 and 4.

Figure 3. Example of one clip containing 16 frames

For the vision-language model, the input data is pre-
processed using the VAEPreprocessor API provided by the
VAE library. This includes resizing and cropping transfor-
mations to produce fixed-size inputs of 224×224 pixels, as
required by the VAE backbone. For the detector-tracker

Figure 4. Classification and text label of the example clip

model, the original size of each image is kept and no ad-
ditional pixel-level normalization is performed. Each clip is
paired with a class label as the ground truth for training.

5. Experiments
We separated this section into two parts based on 2 dif-

ferent experimental models, since they present different re-
sults and use different evaluation metrics.

5.1. Vision-Language Model

Our model combines a pretrained VideoMAE-based
ViViT encoder for video and a CLIP ViT-B/32 encoder for
text, followed by a one linear layer projection head. To
fine-tune the model on our custom dataset of 200 video-text
pairs, we unfreeze the last two transformer layers of both
the video and text encoders, as well as the entire projection
head. The rest of the weights remain frozen to leverage pre-
trained knowledge and reduce overfitting.

We chose the AdamW optimizer due to its effective-
ness in handling weight decay regularization in transformer-
based models. We set the learning rate to 1e-4, with weight
decay of 1e-5 to encourage generalization. The mini-batch
size was set to 4, balancing GPU memory limitations and
dataset size. We monitored training using cosine similar-
ity between projected video and text embeddings, and the
contrastive loss function used was the symmetric InfoNCE
loss, refer to Section 3.

We evaluate our model under the natural language video
retrieval setup using Recall@K.

Recall@K = 1
N

∑N
i=1 1{rank(i) <= K}

where rank(i) denotes the rank of the correct video for the
i-th text query. We report Recall@1, Recall@5, and Re-
call@10 on the test set. Additionally, we analyze the mean
cosine similarity between video and text embeddings to as-
sess embedding space alignment.

The model reaches the following results with 20 testing
clips.

Recall@1 6.1%
Recall@5 45.4%

Recall@10 62.5%
Mean Cosine Similarity 0.42

Since the training data is limited, the model demonstrates
moderate retrieval ability. The relatively low Recall@1 and
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mean cosine similarity suggest that further fine-tuning or
larger training dataset may be necessary for better perfor-
mance.

To further demonstrate the performance, the model is
also tested on a video with 4800 frames. We use some text
queries to extract several top score relevant events. 5 shows
couple good results of relevant clips extracted based on the
corresponding text query.

5.2. Detection and Tracking Model

We trained the scene classification model using the
Adam optimizer with a learning rate of 1e − 3 and weight
decay rate of 1e− 4, selected through grid search on a val-
idation set. The mini-batch size was set to 4 due to GPU
memory constraints. We finetune the model by training the
MLP classifier with input dimension = 35 and hidden dime-
sion = 128 while freezing the YOLOv12n and DeepSORT
weights. We used confidence threshold of 0.4 for YOLO.
nms max overlap = 0.7 and max cosine distance=0.4 are
chosen for DeepSORT. Training is run for 50 epochs, with
early stopping if validation loss plateaued for 3 consecutive
epochs. We partitioned the dataset into 85% training, 10%
validation, and 5% test splits.

We used Precision(P ) to assess the accuracy of the clas-
sified scenes:

P =
TP

TP + FP

The ability to classify all scenes is evaluated by Recall(R):

R =
TP

TP + FN

The model achieved the following results with 20 test clips:

Metric Training Validation Test
Accuracy (%) 49.1 43.2 35.3
Recall (%) 48.5 41.7 36.9

We experimented with a variant model that instead of
collapsing tracker output into a single feature vector for
each object, the feature extractor and MLP are replaced
with a transformer-based classifier, which can be described
by the following architecture: This way per-object and per-
frame tracking information are stacked and fed into a multi-
headed transformer encoder with 2 hidden layers with the
hope that transformer can learn temporal dependencies and
relationship between objects. However, we are not obtain-
ing better results and we hypothesized this is due to the lim-
ited amount of training data.

As an example of results, Fig. 7 is a scene involv-
ing multiple car objects: In this scene, there is a mixture
of intersection and leading cars while the model success-
fully predicts it to be the car following in the presence

Text query: Pedestrian is crossing in front of the ego

Text query: Ego is following a car

Figure 5. Event clip retrieval examples with text query

of complex background. We think the model learned the
dominant feature due to the proximity criteria mentioned
above. In other scenarios, motions from persons are cap-
tured and relied for scene classification. In the example in
Fig. 8, even with a rich categories of objects, a person in
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Figure 6. Detector-tracker scene classification pipeline variant

Figure 7. Ego following a white car at an intersection

the front walking across the street is correctly classified as
pedestrian crossing:

Figure 8. A crossing pedestrian in front of ego at a construction
zone

Meanwhile, we noticed that the model tends to fail in the
scene with combination of object behaviors that seem to be
equally important. For example in the case Fig. 9, there
is a stopping car in the front while there are oncoming cars
on the adjacent lane at an intersection. The leading car is
moving slowly but the model is not able to differentiate it
from a truly stationary object. We hypothesize this type of

Figure 9. Ego coming to a stop behind a slow-moving car at an
intersection

failure is mainly due to the missing information about the
ego motions.

6. Conclusion & Future Work

To achieve event retrieval through classification or text
query, we experimented two models with our own la-
beled dataset. We presented a vision-language retrieval
framework combining VideoMAE (ViViT backbone) and
CLIP (ViT-B/32) to align video clips with natural language
queries. By fine-tuning only the final layers of both mod-
els and introducing a one linear layer projection head, we
learned a shared embedding space using contrastive loss.
Despite the small customized dataset we processed, vision-
language model demonstrates ability to retrieve meaningful
matching clips with text queries, and achieves promising
retrieval performance on qualitative queries. On the other
hand, detection and tracking model demonstrates moder-
ate result in object-related scenario classification. Evalu-
ation with Recall@K metrics confirms the model’s capa-
bility to retrieve relevant clips. Vision-language model has
more flexibility through text-image alignment and is capa-
ble of retrieving both object-related or scene-related sce-
narios. However it requires more testing data with de-
tailed description for each clip. On the other hand, detec-
tion and tracking model performs better object-related clas-
sification task with limited training dataset, since the pre-
defined class size is small. However, it limits the query
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flexibility for complex and unseen scenarios. With the
detection and tracking model, we presented an integrated
pipeline for driving scene classification that leverages the
state-of-the-art object detection and multi-object tracking
to extract meaningful spatio-temporal features from video
clips. By combining YOLO-based detection, DeepSORT
tracking, and a compact motion feature extractor with a
MLP classifier, our approach effectively captures the dy-
namic context of complex traffic scenes. Experimental re-
sults show that the method achieves reasonable accuracy
across diverse scene categories with visualizations confirm-
ing robust understanding. While some gaps remains be-
tween similar scenarios, the modular design allows great
flexibility for future improvement through enhanced feature
engineering or further pursuit of transformer-based models.
Based on the results, we noticed there is some level of over-
fit and worse generalization and we expect to improve this
by expanding dataset size.

For future work, we plan to expand the labeled dataset
for better performance either through manual labeling or
exploring some semi-automated annotation techniques such
as synthetic data generation. Additionally, we aim to incor-
porate auxiliary sensor modalities, such as ego vehilce po-
sition and velocity information, to enrich the model’s con-
textual understanding and improve retrieval performance.
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