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Abstract

High-content fluorescence microscopy faces
challenges due to the labor-intensive annota-
tion of images and poor generalization of tradi-
tional convolutional neural networks. SubCell,
a ViT-based foundation model pretrained on Hu-
man Protein Atlas images, employs masked auto-
encoding and supervised-contrastive learning to
generate robust embeddings. Evaluating Sub-
Cell’s transferability using the yeast CycleNET
dataset, we trained logistic regression classi-
fiers on frozen embeddings, finding strong cross-
species generalization for accurate prediction of
protein localization and cell-cycle staging. These
results highlight SubCell’s potential as a versatile
and effective tool for annotating diverse biologi-
cal imaging datasets.

1. Introduction

High-content fluorescence microscopy is an indispens-
able tool for studying cellular organization and function at
single-cell resolution. Each multichannel image encodes
rich information about cell morphology and protein local-
ization, but extracting this knowledge for tasks like com-
partment annotation or cell-cycle staging traditionally re-
lies on labor-intensive manual labeling and task-specific
models. For example, a recent yeast imaging pipeline re-
quired training separate convolutional networks for cell-
cycle phase and protein localization on thousands of labeled
cells, which imposes a high annotation burden and often
generalizes poorly when experimental conditions change.

SubCell (6) was recently introduced as a foundation
model to overcome these bottlenecks. It is a Vision Trans-
former (ViT)–based encoder trained self-supervisedly on
over 13 000 tagged proteins across 37 human cell lines

from the Human Protein Atlas. The training regimen com-
bines two complementary pretext tasks. First, a Masked
Autoencoder (MAE) objective reconstructs missing image
patches, forcing the ViT to learn global cellular structure.
Second, a supervised-contrastive loss pulls together em-
beddings of the same protein imaged across different cell
lines while pushing apart embeddings of different proteins,
yielding representations that are both morphology-aware
and protein-specific. An additional cell-specific contrastive
term further enforces invariance to cell-level differences. As
a result, SubCell learns deep feature embeddings that cap-
ture subcellular architecture beyond human inspection.

Once pretrained, SubCell’s encoder can be frozen, and
a small MLP “expert” head can be trained rapidly for di-
verse downstream tasks (e.g., protein localization, cell-
cycle stage prediction) using only a few labeled examples.
SubCell not only outperforms prior state-of-the-art mod-
els on these tasks but also generalizes to new microscopy
datasets without any backbone fine-tuning. For instance,
Gupta et al. report that a SubCell model trained solely on
Human Protein Atlas images classifies drug perturbations
and mechanisms of action in an independent cancer-cell
dataset with high accuracy (6). This robustness suggests
that a human-trained SubCell encoder might transfer across
even larger domain gaps.

Problem Statement. In this work, we ask whether a
foundation model trained on human-cell images can be di-
rectly applied to a very different domain—budding yeast.
We leverage the publicly available CycleNET dataset (7),
which provides 64 × 64 single-cell crops of S. cerevisiae
imaged in eight fluorescence channels, each annotated with
two orthogonal labels:

• Cell-cycle stage (6 classes + “artefact”), determined
via a GFP-tagged septin reporter that localizes to the
bud neck at specific phases.

• Protein localization (22 subcellular compartments),
based on the distribution of a GFP-tagged yeast pro-
tein.
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By fine-tuning only a small classifier head on top of the
frozen SubCell encoder (we evaluate both the 3-channel
RBG and 4-channel RYBG pretrained variants), we aim to
demonstrate that:

1. SubCell serves as a true foundation that transfers
knowledge from human cells to yeast cells despite dif-
ferences in morphology and imaging protocols.

2. Its learned embedding space is rich enough to sup-
port both cell-cycle and protein-localization tasks si-
multaneously, without any task-specific retraining of
the backbone.

Showing these points will underscore the promise of foun-
dation models like SubCell in computational cell biology:
enabling rapid adaptation to new species and experimental
setups with minimal new labels, while maintaining robust,
morphology-aware representations of microscopy data.

2. Related Work

2.1. Classical Feature-Based Pipelines

Early high-content fluorescence microscopy studies re-
lied on handcrafted-feature workflows. Tools such as Cell-
Profiler extract morphometric and texture features (size,
shape, intensity) from segmented cells and use simple clas-
sifiers for phenotypic profiling (1). While effective in
well-controlled screens, these pipelines demand extensive
parameter tuning (e.g., segmentation thresholds) for each
dataset and often fail to capture subtle protein-specific pat-
terns across varying illumination or staining protocols.

2.2. Supervised Deep Learning Models

Convolutional neural networks (CNNs) trained on anno-
tated microscopy images have substantially outperformed
classical feature sets. For instance, Husain et al. ensem-
bled multiple CNN architectures to classify single-cell pro-
tein localization, surpassing CellProfiler-based methods (2).
Nevertheless, supervised models require large, well-labeled
datasets and typically overfit to their training domain, strug-
gling to generalize to new cell lines or imaging setups.

2.3. Self-Supervised and Contrastive Learning

Recently, self-supervised learning (SSL) has emerged to
leverage abundant unlabeled microscopy images. SubCell’s
authors compare against DINO4Cells-HPA, a ViT trained
with DINO (self-distillation) on Human Protein Atlas im-
ages, which learned morphology embeddings that outper-
form traditional baselines (6; 3). Likewise, Masked Au-
toencoder (MAE) models have been adapted to microscopy,
training ViTs to reconstruct masked patches of cell images,
thus learning generalizable features without labels (5).

2.4. Foundation Models for Protein Localization

SubCell (6) builds on SSL to create a foundation model
specifically tailored for protein localization. Trained on the
Human Protein Atlas’s large-scale proteomic image collec-
tion, SubCell’s ViT backbones learn from three objectives:
MAE reconstruction, cell-specific contrastive, and protein-
specific contrastive losses, augmented with an attention-
pooling module (6; 5). The resulting models (notably ViT-
ProtS-Pool and MAE-CellS-ProtS-Pool) achieved state-of-
the-art performance on both cell-line classification and pro-
tein localization tasks, significantly outperforming previ-
ous SSL baselines like DINO4Cells-HPA and MAE-only
variants (6). Crucially, SubCell demonstrated strong cross-
domain generalization—e.g., zero-shot transfer to indepen-
dent perturbation datasets—highlighting that its embed-
dings encode both morphology and protein-specific signals
across cell types.

The next section details how we adapt SubCell’s pre-
trained ViT variants to the yeast CycleNET dataset and eval-
uate cross-species transfer for protein localization and cell-
cycle classification.

3. Dataset
Here we briefly describe each dataset used in this work:

• Localization dataset. Yeast cells imaged with three
fluorescence channels (DAPI, GFP-tagged protein, and
cytoplasmic stain). Each crop is annotated by the sub-
cellular compartment of the GFP-tagged protein (e.g.
Mitochondria, Golgi, etc.). Figure 1a(a) shows three
representative examples, each labeled “Protein local-
izes to: . . . ”.

• Cell-cycle dataset. Yeast cells in five channels, of
which we display three (e.g. Hoechst, Cyclin-GFP, and
RFP) to illustrate morphology at different stages. Each
crop is annotated by its cell-cycle stage (Early G1, Late
G1, S/G2, Metaphase, Anaphase, Telophase, . . . ). Fig-
ure 1b(b) shows three representative examples, each
labeled “Stage of cell-cycle: . . . ”.

In both datasets, all raw images were center-cropped
to 64×64 pixels and normalized channel-wise (zero-mean,
unit-variance). We split each dataset into 80

Task Train Test # Classes

Cell-cycle stage 11 445 1 272 6
Protein localisation 14 040 1 600 22

Table 1: Dataset statistics after filtering artefact labels and
selecting the three fluorescence channels used by SubCell.



(a) Protein localization examples

(b) Cell-cycle stage examples

Figure 1: Example crops from our two datasets. (a) Three
random cells from the localization dataset with “Protein lo-
calizes to: . . . ” labels. (b) Three random cells from the
cell-cycle dataset with “Stage of cell-cycle: . . . ” labels.

4. Methods

4.1. Feature Extraction with SubCell

We embed each 3 × 64 × 64 RGB crop using SubCell-
Portable’s pretrained encoders, which concatenate two Vi-
sion Transformer backbones into a 1,536-dimensional out-
put vector. The two variants differ by training objective and
architectural setup:

• ViT–ProtS–Pool: A standard ViT-Base (12 layers,
768-dim hidden size) trained with protein-specific su-
pervised contrastive loss and gated-attention pooling.

• MAE–CellS–ProtS–Pool: Augments the ViT archi-
tecture with a Masked Auto-Encoder (MAE) pretrain-
ing stage that reconstructs occluded patches. It is then
fine-tuned with both cell-specific and protein-specific
contrastive objectives. The use of MAE encourages
global structure awareness, while contrastive heads re-
fine morphological specificity.

The final embedding e ∈ R1536 is obtained by passing
the three-channel input through both encoders and concate-
nating their 768-dim outputs. We extract and save these
embeddings once per crop.

4.2. UMAP Visualization

To assess class separability in SubCell’s embedding
space, we apply Uniform Manifold Approximation and Pro-
jection (UMAP) (8) on the N × 1536 embedding matrix
E. For each task (localization, cell-cycle) and each variant
(MAE, ViT), we compute:

Z = UMAP(n components=2, random state=42)(E), Z ∈ RN×2.

The resulting 2D points are plotted with colors indicating
true class labels. We generate a 2 × 2 grid (Localization–
MAE, Localization–ViT, Cell-Cycle–MAE, Cell-Cycle–
ViT) and save the combined figure as umap all.png at
300 dpi.

Figure 2: UMAP visualization of SubCell embeddings for
both tasks and both model variants.

4.3. Logistic Regression Classifiers

We quantitatively evaluate embeddings by training a lin-
ear classifier on the frozen SubCell features. For each task
and each variant:



1. Load the Ntrain × 1536 training embeddings Etrain and
integer labels ytrain.

2. Exclude any “None” or artefact classes, reindexing re-
maining labels consecutively from 0.

3. Define a linear model

f(e) = We+ b, W ∈ RK×1536, b ∈ RK ,

where K is the number of classes (6 for cell-cycle, 21
for localization after exclusion).

4. Train with cross-entropy loss using Adam (lr = 10−3),
batch size 512, for 10 epochs on GPU when available.

5. Save the checkpoint input dim=1536,
num classes=K, model state dict.

At test time, we load each checkpoint, reconstruct the linear
layer, and perform inference on the Ntest×1536 test embed-
dings. We report accuracy, a per-class classification report
(precision, recall, F1), and plot a K ×K confusion matrix
using Seaborn’s heatmap, with class names matching the
original ordering (excluding any removed classes).

4.4. Baseline: Logistic Regression on Pixel Space

To contextualize SubCell’s performance, we also imple-
ment a baseline where cell classification is performed di-
rectly on raw pixel values using logistic regression. Each
3×64×64 RGB crop is flattened into a 12288-dimensional
vector, and a logistic classifier is trained using the same hy-
perparameters and training strategy as in the embedding-
space experiments. This baseline allows us to disentangle
the benefits of pretrained ViT embeddings from purely low-
level morphological cues.

4.5. Implementation Details

• All code is in Python 3.8. We use PyTorch 1.12 for
model loading and training, umap-learn 0.5 for
UMAP, and scikit-learn 0.24 for evaluation metrics.

• Figures are generated using Matplotlib 3.5 and
Seaborn 0.11. NumPy and Pandas are used for data
processing.

• Model checkpoints, training logs, and code are avail-
able in our repository.

5. Results
In this section, we present the results of our experiments

evaluating the performance of different models on the lo-
calization and cell-cycle classification tasks. We compare a
baseline model, which operates directly on pixel space, with
logistic regression models trained on embeddings from two
variants of the SubCell model: ViT–ProtS–Pool and MAE–
CellS–ProtS–Pool.

5.1. Model Accuracies

Table 2 summarizes the classification accuracies for each
model on both tasks. The MAE–CellS–ProtS–Pool model
demonstrates the highest performance, particularly in the
cell-cycle classification task, where the embeddings benefit
from the Masked Auto-Encoder pretraining.

Model Loc. Acc. Cell-Cycle Acc.

Baseline (Pixel) 50.34% 78.4%
LR (ViT) 63.38% 82.63%
LR (MAE) 64.64% 81.13%

Table 2: Classification accuracies for baseline and logis-
tic regression (LR) models on localization (Loc.) and cell-
cycle tasks.

5.2. Confusion Matrices

To further analyze the classification behavior of our
models, we plot the confusion matrices for each of the four
configurations: Localization-ViT, Localization-MAE, Cell-
Cycle-ViT, and Cell-Cycle-MAE. These matrices illustrate
the distribution of predictions across true classes and high-
light frequent misclassifications.

Figure 3: Confusion matrices for localization and cell-cycle
classification using SubCell embeddings. Top row: Local-
ization (ViT, MAE). Bottom row: Cell-Cycle (ViT, MAE).

5.3. Discussion

The results indicate that the MAE–CellS–ProtS–Pool
model outperforms the other models in both tasks, achiev-
ing an accuracy of 64.64% for localization and 81.13% for
cell-cycle classification. The baseline model, which op-
erates directly on pixel space, shows lower performance,
highlighting the benefits of using pre-trained embeddings
for capturing complex cellular features.



In the localization task, we observe that the model tends
to confuse classes such as the vacuole and vacuole which
aligns with our expectations as the antibody probing vac-
uole is bound to probe for vacuole periphery, rendering it
hard. The model also confused classes such as Bud, Bud
Neck and Bud periphery, which poses a similar problem to
vacuole - the structures are too close for model to make a
clear distinction. Similarly, in the cell-cycle task, confusion
is most common between stages, such as early G1 and late
G2, which could be deemed suprising if one considered the
time-seperation of these two classes (G1 is before replica-
tion (S) stage, and G2 is after S), but these two classes in-
deed have subtle morphological differences in yeast, mak-
ing it hard for model to differeniate.

5.3.1 Normalization of Embeddings

In our experiments, we also investigated the impact of var-
ious normalization schemes on the embeddings. Specifi-
cally, we applied the following normalization techniques:

• Min-Max Normalization: This technique scales the
data to a fixed range, typically between 0 and 1.

• Z-Score Normalization: This standardizes the data to
have a mean of 0 and a standard deviation of 1.

• L2 Normalization: This scales the vector such that its
Euclidean norm is 1.

However, none of these normalization schemes yielded bet-
ter results in terms of model accuracy or other performance
metrics. This suggests that the embeddings generated were
already well-scaled, or that the downstream model was ro-
bust to the scale of the embeddings in this specific context.

5.3.2 UMAP discussion

The UMAP visualization (provides further insight into the
representational structure learned by SubCell). For the
localization task, the ViT variant produces more com-
pact and distinct clusters across many subcellular compart-
ments, including Golgi, Vacuole, and Nuclear Periphery.
This reflects the influence of the protein-specific contrastive
loss that encourages embedding consistency across imag-
ing conditions. MAE embeddings, while slightly more dis-
persed, still show class-specific groupings and reflect global
structural understanding, albeit with higher inter-class over-
lap.

In the cell-cycle task, the MAE variant excels in orga-
nizing the embedding space according to the natural tem-
poral sequence of stages. The UMAP layout reveals clear
and elongated clusters that correspond to early G1, late

G1, S/G2, Metaphase, Anaphase, and Telophase. This or-
dered structure suggests that MAE pretraining helps en-
code temporal continuity and cellular progression. Con-
versely, the ViT variant also shows separation but with less
defined boundaries between successive stages, indicating
lower temporal coherence.

Interestingly, in both tasks, no-protein-probed images
(”None”) or artefactual labels (e.g., None,” Aberrant”) oc-
cupy peripheral regions in the embedding space, suggesting
that both models successfully learn to downweight noisy
samples. Together, these UMAP projections support our
quantitative findings and underscore the complementary
strengths of the two model variants: ViT for protein-specific
localization, and MAE for morphological and temporal rep-
resentation.

5.3.3 Using earlier activations as embeddings

In addition, we explored the use of earlier transformer ac-
tivations as alternative feature embeddings, hypothesizing
that intermediate layers might generalize better to yeast im-
ages given the human-centric training of the model. How-
ever, classification performance using these intermediate
features was consistently lower than when using the default
pooled output embeddings, suggesting that SubCell’s final
representation is more transferable despite domain shift.

6. Future Directions
Several avenues remain open to further improve and in-

terpret SubCell-based models in yeast microscopy. While
this work primarily focused on the three canonical chan-
nels (nucleus, protein of interest, cytoplasm), extending
evaluations to additional fluorescence markers—such as
mitochondria, vacuole, or actin—could clarify whether
richer multi-channel input enhances performance across
both tasks.

Although we conducted classification for all cell-cycle
stages, further granularity in error analysis is warranted. In-
vestigating confusion patterns between neighboring or mor-
phologically similar stages (e.g., late G1 vs. S/G2) may
guide model adjustments or label refinements. This will be
particularly useful in addressing any systematic misclassifi-
cation observed in the confusion matrices.

We also generated and saved attention maps from the
transformer encoder for select examples. Future work will
involve deeper analysis of these maps to interpret which cel-
lular structures or regions the model attends to during dif-
ferent classification decisions. This can help in model inter-
pretability, especially when predictions diverge from expert
annotations.

Finally, integrating the SubCell framework into weakly-
supervised or semi-supervised pipelines may reduce re-
liance on extensive labels in new microscopy datasets. This



would further validate its applicability as a general-purpose
backbone for bioimage analysis.
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