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Abstract

Accurate coral bleaching classification is essential for
effective reef monitoring and conservation. This project
investigates the robustness and transferability of transfer
learning models—ResNet18, MobileNetV2, and baseline
CNN and logistic regression classifiers—across datasets
that vary notably in image saturation and size. Mod-
els trained on more vibrant, high-quality images generally
achieve higher accuracy but show reduced generalization
when tested on datasets with less saturated, muted tones.
Combining datasets with different saturation qualities often
leads to diminished overall performance, highlighting the
challenges posed by heterogeneous real-world data. Apply-
ing explainability methods such as Grad-CAM reveals that
these models consistently focus on ecologically meaning-
ful features, enhancing trust and interpretability. These in-
sights are important for guiding the development of robust,
transferable coral bleaching classifiers capable of perform-
ing across diverse environmental conditions.

1. Introduction

Coral reefs are vital to marine ecosystems and global
biodiversity. But as ocean temperatures rise and envi-
ronmental conditions shift, corals experience stress, re-
sulting in the loss of their symbiotic algae and turn
white—threatening the survival of the reef. Accurate and
efficient automated classification of coral bleaching can en-
able quick conservation actions and large-scale monitoring,
critical for maintaining these fragile ecosystems healthy.

Automated classification of coral bleaching using under-
water imagery has the potential to largely enhance moni-
toring efforts, offering scalable and efficient alternatives to
manual surveys. Transfer learning techniques, which adapt
pre-trained deep learning models to specific tasks, are par-
ticularly promising due to limited labeled coral datasets and
the complexity of underwater images.

However, datasets used for coral bleaching classification

often vary widely in image quality, particularly in color sat-
uration and vibrancy. These differences pose challenges to
model robustness and generalization, especially when mod-
els trained on one dataset are applied to another with very
distinct visual characteristics.

In this project, I investigated the robustness of several
classification models—including ResNet18, MobileNetV2,
a baseline CNN, and logistic regression—trained on small,
medium, and large coral datasets with differing satura-
tion levels. I assessed how these models generalize across
datasets, highlighting the effects of combining datasets
with heterogeneous image quality. To add interpretabil-
ity, I applied Grad-CAM explainability methods to visual-
ize model attention, confirming that classification decisions
are grounded in relevant coral features. These findings offer
valuable insights for developing reliable, transferable mod-
els that can support coral reef conservation efforts under
varying real-world conditions.

2. Related Works

Automated classification of coral bleaching has gained
increasing interest as the need for scalable and automated
monitoring grows. Early approaches relied heavily on tra-
ditional machine learning methods using handcrafted fea-
tures. Jamil et al. (2021) proposed a Bag of Features
(BoF) based deep learning framework to detect bleached
corals, demonstrating that carefully engineered feature ex-
traction can yield good classification performance, though
a shortcoming is that such methods often struggle when
dataset variability is introduced [2]. In contrast, more re-
cent work has shifted towards deep convolutional neural
networks (CNNs), which automatically learn relevant fea-
tures from data.

A variety of CNN architectures have been explored for
coral reef classification. Karthik et al. (2024) investigated
several machine learning algorithms for coral classification,
emphasizing the need for robust model performance across
different datasets and imaging conditions [3]. Similarly,
Wang et al. (2024) introduced ML-Net, a multi-local per-
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ception network designed to classify healthy and bleached
corals by capturing both global and local image features,
highlighting the importance of spatial attention to improve
accuracy [6]. These approaches underscore the potential of
deep learning but often lack thorough evaluation of model
transferability across datasets with varying image qualities.

Transfer learning has emerged as a powerful tool to
leverage pre-trained models on large-scale datasets like Im-
ageNet, fine-tuning them for coral bleaching classification
with limited labeled data. Recent studies have demon-
strated the effectiveness of architectures such as ResNet
and MobileNet in this domain, enabling improved accuracy
and reduced training times [1][4]. However, the influence
of dataset characteristics—such as coral saturation, color
vibrancy, and dataset size—on model robustness remains
largely underexplored. My work builds on these insights
by systematically evaluating transfer learning models across
small, medium, large , and combined visual quality datasets.

Explainability in coral classification models is also es-
sential to consider when evaluating robustness. Techniques
like Grad-CAM provide visual explanations of model pre-
dictions, allowing researchers to verify that models focus on
biologically relevant features such as bleached coral regions
[5]. While prior works have applied Grad-CAM to general
image classification, its integration in coral bleaching stud-
ies remains limited. This approach incorporates Grad-CAM
to validate and interpret model decisions.

In summary, this project differentiates itself by combin-
ing transfer learning across multiple coral datasets with het-
erogeneous image qualities and leveraging explainability
methods to assess model reliability. This holistic approach
addresses gaps in robustness and interpretability that are
critical for practical use in marine conservation contexts.

3. Datasets
This project uses three publicly available coral image

datasets on Kaggle for binary classification of bleached vs.
healthy corals. These datasets differ in size, visual qual-
ity, and how easy the classes are to distinguish. Together,
they allow for testing the generalizability and robustness of
transfer learning models across varying image conditions.

The small dataset, titled ’Bleached and Unbleached
Corals Classification’ [2], contains 342 high-quality, bal-
anced images. The photos tend to be vibrant, with a clear
visual contrast between bleached (white/pale) and healthy
(colorful) coral classes, making it relatively easy for mod-
els to learn from.

The medium dataset, titled Healthy and Bleached Corals
Image Classification, includes 923 images with lower color
saturation. Many of the images are close-ups, and class dis-
tinction is more subtle. This dataset includes naturally white
or earth-toned corals, making the labeling task more diffi-
cult and closer to real-world conditions.

Figure 1. Example images from the small coral dataset.

Figure 2. Example images from the medium coral dataset.

The large dataset, titled ’BHD Corals’[2], consists of
1,432 images and includes some overlap with the small
dataset (approximately one-third). It is augmented with im-
age rotations and flips and reflects underwater photography
conditions with more noise and format variability. This
dataset serves as a more comprehensive and realistic bench-
mark for evaluating model robustness.

Figure 3. Example images from the large coral dataset.

A combined dataset (comb) was created by merging the
small and medium datasets to test the effects of mixed-
quality training data. Interestingly, combining datasets with
different saturation levels and coral types created challenges
for generalization, as the model sometimes struggled to rec-
oncile differences between vibrant and duller coral images.

All datasets were preprocessed using TensorFlow
pipelines. Images were resized to 224×224 pixels and
batched for efficient loading. For training sets, light aug-
mentations were applied, including random flips, subtle
brightness shifts, and contrast and saturation adjustments to
simulate murky underwater conditions. Initial experiments
also included rotations, but I found that this was not reflec-



tive of how reef images are captured, and thus harmed learn-
ing more than provided a regularization effect. Light aug-
mentation helped models become more resilient to lighting
and visual noise while avoiding overfitting to overly bright
or sharp features.

4. Methods
To classify coral bleaching and evaluate model robust-

ness across varying datasets, I implemented and compared
four different model architectures: logistic regression and a
custom CNN as baseline models, and two pretrained convo-
lutional neural networks (ResNet18 and MobileNetV2) for
transfer learning.

4.1. Baseline Models

Our logistic regression baseline serves as a simple, inter-
pretable starting point. It flattens input images and applies
a single dense sigmoid layer to predict binary bleaching la-
bels. While it lacks spatial feature extraction, it provides a
useful performance benchmark.

We also built a basic 3-layer convolutional neural net-
work (CNN) as a stronger non-transfer baseline. This model
consists of three convolutional layers with ReLU activations
and max pooling, followed by a fully connected layer and
sigmoid output. This architecture allows the model to learn
spatial patterns relevant to coral bleaching without relying
on pretrained features.

To assess how dataset size affects generalization and
overfitting, I trained both baseline models on the small and
medium datasets and evaluated their performance not only
on their respective test sets, but also on the larger and more
diverse large dataset. This allowed us to explore whether
models trained on limited or lower-quality data can still
generalize to broader distributions. In particular, this cross-
evaluation aimed to show how overfitting on small, satu-
rated datasets manifests when tested on images with more
variability in lighting, formatting, and coloration.

4.2. Transfer Learning Models

For more powerful and generalizable representations, I
used transfer learning with two pretrained architectures:
ResNet18 and MobileNetV2, both trained on ImageNet.
I froze the base convolutional layers and only adjusted
the last classification layers, using global average pool-
ing, dropout, and dense layers. ResNet18 was chosen for
its shallower depth and residual connections, which help
maintain feature propagation and reduce vanishing gradi-
ents. MobileNetV2 offers a lightweight architecture that has
proven to be effective in many classification tasks, making it
an efficient and powerful alternative for feature extraction.
Both transfer models were fine-tuned to classify coral im-
ages as bleached or unbleached, leveraging learned visual
features from large-scale image data.

4.3. Evaluation and Explainability

I evaluated all models using accuracy, precision, recall,
and F1 score across different training and testing dataset
combinations. In addition to within-dataset performance, I
tested cross-dataset generalization—particularly for models
trained on smaller datasets but evaluated on the larger, more
diverse test set.

For model interpretability, I applied Grad-CAM visual-
izations using the tf-keras-vis library. This technique high-
lights class-relevant regions of each image that influenced
the model’s decision, offering insights into which visual
cues (e.g., coral texture, saturation, or shape) each model
attended to. I visualized both correctly and incorrectly clas-
sified examples to understand failure modes and investigate
how dataset quality impacted model focus.

This methodological framework enabled a comprehen-
sive investigation of classification accuracy, robustness, and
explainability across different data conditions and model
complexities.

5. Experiments

To evaluate the effectiveness and robustness of the coral
bleaching classifiers, I conducted a series of experiments
using four model architectures across multiple datasets of
varying size and quality. These experiments focus on as-
sessing performance, understanding generalization across
datasets, and exploring how dataset characteristics such as
saturation and diversity influence outcomes.

5.1. Baseline Models: Logistic Regression and CNN

We began by establishing two baseline models: a logistic
regression classifier and a shallow convolutional neural net-
work (CNN). These were trained on the small and medium
datasets and evaluated on both their respective test sets and
on the large test set to test cross-dataset generalization.

5.1.1 Logistic Regression Baseline

On the small dataset, the logistic regression model per-
formed reasonably well with an accuracy of 78.4% and pre-
cision of 85.7%, but its recall was lower (57.1%), indicating
it struggled to detect some positive (unbleached) cases. On
the medium dataset, while recall improved significantly to
90.9%, precision dropped to 51.7%, suggesting the model
over-predicted unbleached coral when trained on this lower-
quality dataset. Both the small and medium models saw
a substantial drop in performance when evaluated on the
large test set, with identical accuracy (53.6%) and F1 score
(55.7%). This suggests that simple models overfit to the
stylistic and color saturation biases of their training data and
do not generalize well to more complex or diverse inputs.



Table 1. Baseline Model Performance (Logistic Regression and CNN)
Model Accuracy Precision Recall F1 Score
Logistic Regression (Small) 0.7843 0.8571 0.5714 0.6857
Logistic Regression (Medium) 0.5507 0.5172 0.9091 0.6593
Logistic Regression (Small → Large Test) 0.5364 0.5039 0.6214 0.5565
Logistic Regression (Medium → Large Test) 0.5364 0.5039 0.6214 0.5565
CNN (Small) 0.7843 0.7778 0.6667 0.7179
CNN (Medium) 0.5797 0.5500 0.6667 0.6027
CNN (Small → Large Test) 0.7409 0.8485 0.5437 0.6627
CNN (Medium → Large Test) 0.5727 0.5542 0.4466 0.4946

5.1.2 CNN Baseline

On the small dataset, the CNN baseline slightly im-
proved recall (66.7%) while maintaining a similar accuracy
(78.4%) and a higher F1 score (71.8%), suggesting better
spatial pattern recognition than logistic regression On the
medium dataset, performance dropped across all metrics
(F1: 60.3%), again indicating the lower visual contrast of
this dataset affected the model’s ability to distinguish be-
tween classes. Interestingly, the CNN trained on the small
dataset performed better on the large dataset (F1: 66.3%)
than the one trained on the medium dataset (F1: 49.5%).
This may reflect how visual clarity and contrast in the small
dataset enabled more transferable features, even if the quan-
tity of data was lower.

5.2. Transfer Learning Models: ResNet18 and Mo-
bileNetV2

Next, I evaluated transfer learning models, which were
pretrained on ImageNet and fine-tuned for binary coral clas-
sification.

5.2.1 ResNet18

Small and large datasets both led to strong performance (F1:
93.0% and 93.3%, respectively), indicating that pretrained
representations paired with clear training images can yield
high-quality classifiers even with limited data. Medium
dataset performance lagged behind (F1: 67.2%), consis-
tent with earlier trends suggesting that subtle visual features
and lower saturation in this dataset were harder for models
to learn from. Combined dataset (small + medium) per-
formance was lower (F1: 71.2%) than either dataset alone.
This suggests that combining datasets with different visual
styles may introduce noise or confusion, harming general-
ization instead of improving it.

5.2.2 MobileNetV2

Large dataset training yielded good results (F1: 77.7%),
though lower than ResNet18, consistent with MobileNet’s
shallower architecture and reduced parameter count. Small
dataset training produced comparable performance (F1:

Figure 4. Logistic Regression Small

Figure 5. Logistic Regression Medium



Figure 6. CNN Small

Figure 7. CNN Medium

71.2%), again showing that small but high-contrast data can
be highly effective with transfer learning. Medium dataset
and combined dataset performance was lower (F1: 59.7%
and 58.8%, respectively), reinforcing the theme that visual
variability and lower saturation challenge model learning
and generalization.

5.3. Using Grad-CAM For Model Explainability

To better understand model behavior and gain insight
into the decision-making process behind coral bleaching
classification, I applied Grad-CAM to visualize class acti-
vation maps for both ResNet18 and MobileNetV2. These
visualizations were particularly useful in highlighting what

Figure 8. ResNet18 on large dataset

Figure 9. MobileNetV2 on large dataset

parts of the image were driving classification outcomes, es-
pecially for images that were incorrectly labeled.

Figure 10. Low activation for closeups.



Table 2. Transfer Learning Performance Using ResNet18 and MobileNetV2
Model Accuracy Precision Recall F1 Score
ResNet18 (Small) 0.9412 0.9091 0.9524 0.9302
ResNet18 (Medium) 0.6884 0.6769 0.6667 0.6718
ResNet18 (Large) 0.9364 0.9238 0.9417 0.9327
ResNet18 (Combined) 0.7302 0.7000 0.7241 0.7119
MobileNetV2 (Small) 0.7302 0.7000 0.7241 0.7119
MobileNetV2 (Medium) 0.6377 0.6379 0.5606 0.5968
MobileNetV2 (Large) 0.7909 0.7767 0.7767 0.7767
MobileNetV2 (Combined) 0.6667 0.6818 0.5172 0.5882

Across both models, I observed a consistent trend:
images where the coral or reef filled most of the
frame—especially close-up shots with little to no visible
blue water—tended to have very weak or unfocused acti-
vation. This lack of broader spatial context may be limiting
the model’s ability to infer bleaching status, particularly if
key visual cues like color contrast with surrounding water
or structural patterns are absent.

Figure 11. High activation along reef horizon lines

Figure 12. Bleached images focus on horizon line and have low
activation for closeups (ResNet18)

Figure 13. ResNet18 Incorrect Classifications

In the ResNet18 model, many of the correctly classi-
fied images showed strong activation along the top and side
thirds of the image. These areas often correspond to horizon
lines or boundaries between reef structures and open water.
This suggests the model may be relying on large-scale con-
trast features or environmental cues that appear in these re-

gions. However, this also led to misclassification when such
a boundary was present but not informative—for example,
a diver in the frame, light reflections, or open water with
no reef intersection. In several failure cases, the model fo-
cused on these misleading elements rather than on the coral
features themselves.

Figure 14. Localized focus, weaker activation with heterogenous
corals

The MobileNetV2 model demonstrated a slightly differ-
ent behavior. Incorrectly classified images often showed
more diffuse or less sharply defined activation, sometimes
focusing on multiple unimportant regions or on isolated
texture features rather than the broader reef structure. In
some cases, it concentrated on smaller contrast spots or iso-
lated coral patches without picking up the larger context of
bleaching. This may suggest that MobileNetV2, with its
lighter architecture, is less able to capture global spatial re-
lationships and instead relies more on local texture features.

These explainability findings reveal that both models are
sensitive not only to coral features but also to background
and contextual elements such as water coloration, horizon
lines, or foreign objects like divers. This has important im-
plications: for robust coral bleaching classifiers, input data
should ideally capture consistent visual cues while mini-
mizing distracting or irrelevant features. Future work could
explore preprocessing or attention-guided architectures to
reduce spurious focus and improve generalization across
image styles and compositions.

6. Conclusion
This project explored the use of transfer learning and

explainability techniques for coral bleaching classifica-
tion across datasets of varying size and visual quality. I
found that transfer learning models like ResNet18 and Mo-



bileNetV2 significantly outperformed traditional baselines
such as logistic regression and shallow CNNs, especially
when trained on larger and more diverse datasets. How-
ever, combining datasets with different visual characteris-
tics—such as color saturation and image framing—did not
always improve generalization, highlighting the challenges
of dataset shift.

Grad-CAM visualizations revealed that model attention
often focused on contextual features like horizon lines or
background contrast, rather than solely on coral structures.
This suggests that classifier performance can be sensitive to
framing, scene composition, and non-coral elements within
the image.

These findings emphasize the importance of dataset con-
sistency and the need for robust explainability tools in envi-
ronmental image classification. Future work could explore
fine-tuning feature attention, improving data augmentation
to simulate natural variation more effectively, or incorporat-
ing domain-specific knowledge into model training.
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