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Abstract

This paper explores the integration of computer vision,
deep reinforcement learning, and self-play in training an
autonomous agent to play a custom two-player game in-
spired by League of Legends and Dota 2. A toy game en-
vironment was developed using pygame, featuring discrete
abilities, resource management, and spatial dynamics. To
interpret the visual input and account for temporal depen-
dencies, a convolutional neural network (CNN) was com-
bined with a long short-term memory (LSTM) network. The
agent uses a Soft Actor-Critic (SAC) framework, augmented
with continuous action embeddings and entropy regulariza-
tion, to learn a policy through experience replay and self-
play. Experimental results show that while the agent can ex-
ploit the environment to achieve maximal rewards, the actor
and critic models do not accurately predict the environment
dynamics. This work highlights the challenges of learning
in partially observable, multi-agent environments and sug-
gests directions for improving agent behavior through cur-
riculum learning and enhanced architectural design.

1. Introduction

The real world is a dynamic and complex environment,
governed by systems that are often only partially understood
through theorems and postulates built on simplifying as-
sumptions. Despite these abstractions, perceiving the world
and extracting meaningful information from sensory input
remains inherently difficult. For a robot or artificial agent to
interact effectively with its surroundings, it must first inter-
pret the environment through sensing, then translate those
observations into purposeful actions.

In such complex settings, it is difficult to map sensed data
into a meaningful feature or "state" representation. Further-
more, for an agent to apply itself to a variety of tasks, it
must be able to generalize over a larger feature space rather
than train for specific features. This link between the in-
put and the actions taken relies on the agent focusing on
features that it deems important rather than hand-crafted in-

formation.

Selecting actions that maximize the likelihood of success
is challenging not only because feedback can be sparse or
ambiguous, but also because "success" itself is often poorly
defined. Consider now the action of walking. Though it
may be easy to create a heuristic that captures the amount
of time in the air, it provides little feedback for the actual
motion of walking itself (e.g. putting one foot in front of
the other). Furthermore, the method of feedback comes
through raw input rather than pre-processed information.
While heuristics may provide rough guidance, they rarely
capture the full complexity of what makes an action effec-
tive. This challenge is amplified for autonomous agents,
which rely on well-specified reward signals to distinguish
between desirable and undesirable behavior. The task of
mapping high-dimensional sensory inputs to coherent, goal-
directed actions remains a fundamental obstacle in real-
world decision-making.

Mirroring the complexity of real life in a much sim-
pler setting, video games tend to display raw pixel input
and other raw input (sound) and receive actions to alter the
game’s state. In video games, a player must convert raw vi-
sual input into an understanding of the game state (player
health, enemy positions, objectives) and use this inferred
state to decide on actions that maximize long-term reward.
Adversarial settings only further complicate this process, as
players must take into account the potential actions of the
adversarial agents, as well as adjust to a more complex and
evolving environment.

This paper aims to replicate the complex process of using
visual input to take reward-maximizing actions through the
use of a simple two-player game. I use sequences of 12
frames of input 200 pixels by 150 pixels in RGB as input to
a convolutional neural network (CNN) and long short term
memory (LSTM) model. The output of two different CNN-
LSTM blocks are used to determine an anticipated reward
value within the critic and a specified action to take in the
actor. The critic serves as a method of understanding the
rewards of taking specific actions and the actor serves to
maximize the rewards through taking specific actions using



the critic values as a heuristic. The critic is a fully connected
neural network (FCN) with one value output and the actor
is an FCN with two heads, one for the selection of an action
and one for the position values within the game to take the
action.

2. Related Work

Previous work in deep reinforcement learning has
demonstrated the capacity of autonomous agents to process
raw pixel input and learn effective, reward-maximizing be-
haviors. Notably, [[7] and [6] showcase this capability in dif-
ferent but complementary ways. In [7], the agent receives
sequences of four consecutive frames as input, enabling it to
extract temporal information directly from raw visual data.
This method allows the agent to infer velocity and momen-
tum without explitictly modeling time.However, due to the
partially observability of my two-player game, where the
agent lacks access to the internal states or hidden actions of
the oppenent, I could not utilize frame-stacking, leading me
to pursue a different time-dependent neural network.

In contrast, [6] focuses on transforming raw pixel in-
put into a condensed latent feature space using a convo-
lutional encoder. This latent space is then used for policy
learning, improving sample efficiency and robustness, while
also reducing the agent model’s complexity. Inspired by
this approach, I adopt a similar strategy, compressing high-
dimensional visual input into a lower-dimensional, abstract
feature space using a convolutional encoder.

Another relevant example of visual reinforcement learn-
ing is presented in [5], which employs a CNN-LSTM ar-
chitecture to train an agent to play the game DOOM. The
convolutional layers extract spatial features from raw input
frames, which are then passed through an LSTM to main-
tain a temporal context. While this work effectively handles
pixel-based inputs and demonstrates temporal reasoning, its
singleplayer setup lacks the adaptive complexity introduced
by opponent modeling. The absence of self-play or adver-
sarial training limits its generalization to multi-agent envi-
ronments, where the agent must continually adapt to evolv-
ing opponent strategies.

To address this limitation in other areas, several works
have employed self-play as a means of generating a nat-
ural curriculum and increasing agent robustness. [2]], [1],
and [8] demonstrate that training against a past versions of
the agent leads to more generalized and adaptable policies.
The use of self-play introduces stochasticity into the envi-
ronment, encouraging agents to continuously improve. In
particular, [8] developed a league-based training framework
where agents are pitted against previous policies to prevent
overfitting and collapse into narrow strategies, resulting in
a more stable and scalable learning process.

Regarding the learning algorithm itself, I draw from the
Soft Actor-Critic (SAC) framework introduced in [3]]. SAC

is an off-policy algorithm that combines entropy maximiza-
tion with actor-critic learning, promoting exploration and
stabilizing policy updates. Its off-policy nature allows the
use of a replay buffer, enabling the agent to learn from past
experiences that may differ from the current policy, which
is a useful trait in symmetric, self-play environments where
roles between player and opponent can switch. Building on
this, [4] extends SAC to visual domains by incorporating la-
tent feature representations for image-based state encoding.
Like [6] and [5], this work uses convolutional encoders to
extract meaningful state features but instead discards value
based methods like deep Q-learning in favor of actor-critic
techniques, which generally offer better stability and con-
vergence in continuous or partially observable settings.

Collectively, these prior works inform the architectural
and methodological choices in this paper. By integrat-
ing latent representation learning, recurrent modeling, and
self-play within a SAC-based reinforcement learning frame-
work, this work aims to demonstrate that an agent is capa-
ble of learning robust and adaptable strategies in a visually
complex, adversarial two-player game.

3. Methods

To facilitate my agent’s learning, I created a custom two-
player video game, a deep learning architecture consisting
of a CNN-LSTM blocks for state representation, and actor-
critic modlues for decision-making and value estimation.

3.1. Game Environment

I designed a custom two-player game using the pygame
library and drawing inspiration from MOBA-style games
like League of Legends and Dota 2. The game includes
fundamental mechanics such as movement, ability casting,
and resource management. Each player can perform one
of three abilities: a directional projectile attack ("Q"), an
area-of-effect damage zone ("W"), and a temporary shield
("E"). These abilities differ in terms of damage output and
cooldown durations, encouraging diverse strategic behav-
iors.

Player actions such as movement and targeting are de-
rived from the mouse position, allowing for spatially depen-
dent interaction. To accommodate visual processing con-
straints, game sprites are deliberately larger to reduce the
visual resolution passed to the learning agent. Health and
stamina bars are visible for both players, reflecting current
health and current stamina available, respectively. Figure|[I]
shows an example in-game screenshot with random policy
agents.

3.1.1 CNN-LSTM Architecture

I process the visual input using a CNN and an LSTM. A
convolutional neural network is a series of layers that per-
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Figure 1. Example image of the toy game environment.

form convolution on a multi-dimensional input. Oftentimes
convolution layers will contain multiple filters to gather in-
formation in varying methods. The CNN captures increas-
ingly complex features from an input as the input makes its
way through the model.

The architecture of my CNN takes in a sequence of 12
200 x 150 x 3 images and consists of three convolution lay-
ers with ReLU activation layers and max pooling layers in
between. The three layers of my arcitecture are as follows:

* Convl: 16 filters, kernel size 3, stride 2, padding 1
* Conv2: 32 filters, kernel size 3, stride 2, padding 1
e Conv3: 32 filters, kernel size 3, stride 2, padding 1

Each convolution layer is followed by a ReLL.U activation
layer and a max pooling layer of kernel size 2, resulting in
a final flattened vector size of 192. The ReLU layers are
activation layers that use the ReLU function to introduce
nonlinearities in the neural network, and the max pooling
layers take the value of the maximum pixel within the kernel
area.

The output of the CNN is then flattened and compressed
into a feature representation of size 128. This feature vector
serves as the latent state space vector representation of the
visual input. In order to fit within the memory of my ma-
chine I needed to reduce the original resolution of 800 x 600
to 200 x 150 neccessitating an increase in the size of the
sprites of the gae. Figure 2] shows a reduced-resolution im-
age input example.

This vector is then fed into an long short-term mem-
ory network, which updates a hidden state and a cell state
while collecting inputs. The LSTM module has a hidden
state size of 256. The recurrent layer allows the model to
maintain temporal context, which is essential in this par-
tially observable setting where opponents’ internal states
(e.g. cooldowns) are not directly visible.

Figure 2. Example input to the CNN.

3.1.2 Actor and Critic Networks

The actor and critic components are each equipped with in-
dependent CNN-LSTM blocks to interpret the game state
and mitigate cross-network interference during training.
This separation ensures that actor and critic representations
evolve independently, maintaining network stability. Addi-
tionally, if I were to link the two network into a shared fea-
ture representation, it would be hard to argue for whether
the actor or critic should update the shared module and at
what frequency. Additionally, since the actor and critic op-
timize for separate objectives (value approximation and pol-
icy exploitation), it made more sense to separate the archi-
tectures.

Both the actor and critic utilize the hidden state of their
corresponding CNN-LSTM to determine an action to take
and a value estimation respectively.

The actor outputs two sets of values:

» Action selection: A 4-dimensional unnormalized em-
bedding for each of the 5 possible actions (idle, move,
projectile, zone, shield). These are compared against
an embedding matrix using cosine similarity to pro-
duce action logits.

* Positional execution: Mean and standard deviation pa-
rameters for a Gaussian distribution over (z,y) coor-
dinates.

Actions are sampled using softmax over logits and posi-
tions are sampled from the corresponding Gaussian. This
stochasticity promotes exploration and policy robustness.
Fully connected layers are used for both the action embed-
ding and the positional parameters.

The critic network produces a scalar estimate of the
state-action value. After processing input through its CNN-
LSTM stack, the critic applies three fully connected layers



with dimensions 256, 128, and 1, using ReLU activations
between layers.

3.2. Training Methods
3.2.1 Frame Skipping and Temporal Sequences

Inspired by [7], S]], and [8]], I implement a frame skip strat-
egy to reduce computational overhead. I use a skip inter-
val of 6 frames rather than the skip interval of 4 frames
that is conventional. The agent selects an action every 6
frames, which corresponds to every fifth of a second in
a 30 frames per second game. Each training sample is
composed of a 12-frame sequence, allowing the model to
learn long-term dependencies and assign credit appropri-
ately over time. This overlap in sequences is key for main-
taining continuity as well.

3.2.2 Soft Actor-Critic Optimization

The agent is trained using the Soft Actor-Critic (SAC) algo-
rithm [3]], which facilitates off-policy learning and entropy-
regularized policy optimization. SAC is well-suited for en-
vironments involving self-play due to its ability to learn
from diverse and past experiences stored in a replay buffer.
Specifically for this toy game, since the player agent will
eventually switch places with the opponent, learning a pol-
icy over a larger state space becomes increasingly important
to reduce the stochasticity of the opponent when training.

To support gradient-based learning over discrete actions,
an action embedding mechanism is used. By mapping ac-
tions into a continuous embedding space, we allow gradi-
ents to flow through action selection, enabling end-to-end
differentiability. This embedding works similarly to embed-
ding tokens used in natural language processing. The em-
beddings only serve to allow for the use of gradient-based
methods.

Actor updates are performed by minimizing the follow-
ing loss:
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Qo (s, a) is the expected return for taking an action a within
a state s. These values are determined using the current
critic. The states are sampled from the replay buffer D and
the actions are sampled from the current policy m. H rep-
resents the entropy of the policy at the specified state. One
thing to note is the use of approximate gradients rather than
analytical gradients. The gradients are determined using re-
play buffer sampling. The actor loss is used to update both
the actor and the action embedding layer.

The temperature parameter « is adjusted automatically
to ensure the entropy remains close to a target value:

Lo =Esup [—a-H(7(s)) — Hiarget] 2)

For this game, since there is a discrete dimensionality of 5
and a continuous dimensionality, the target entropy that I
used was -5, directly equaling the number of distinct dis-
crete actions.

Critic loss is computed using the mean squared error
between predicted Q-values and the expected return from
the Bellman Eauation and target Q-values of the next state-
action pair:

1
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r represents the rewards at the next state, d is a flag deter-
mining whether the state is a terminal state, and ~ is the
discount factor. Once again, the critic loss is determined
through sampling from the replay buffer. The critic loss is
backpropagated through the critic network.
Target networks are updated using a Polyak averaging
strategy:
O«7-0+(1—7)-0 Q)

0 is a parameter in the target critic network and 6 is a pa-
rameter in the critic network. 7 determines the rate at which
the target critic network is updated, usually set to 0.005.

All learned parameters are optimized using Adam with a
learning rate of 1 x 1073.

3.2.3 Replay Buffer

I used a replay buffer with 20,000 transitions (observation,
action, reward, next observation sets). Due to memory lim-
its this is the maximum that I could store without risk of
memory overflow. However, having 20,000 transitions is
satisfactory for conducting my policy optimization, as it en-
compasses approximates the past 20 rollouts (full trajectory
run throughs of my game).

3.2.4 Self-Play Curriculum

Self-play introduces a natural curriculum by incrementally
challenging the agent. To avoid destabilizing learning, only
the player is updated while the opponent is held fixed. Ev-
ery 20,000 training steps, the opponent’s policy is replaced
with the latest version of the player’s policy. This semi-
static opponent scheme ensures that the training environ-
ment evolves gradually, enabling stable and consistent pol-
icy improvement over time.

3.3. Training Setup

When training my policy, repeatedly ran my game and
updated my critic in real time at every step that I toook an
action. I used batches of size 256 to update my actor and
critic, making sure to use the same batch for both the ac-
tor and critic. Both the actor and critic trained once each



action step. When conducting rollouts, I made sure to col-
lect 10 times the batch size of transitions to start training to
decrease the correlation between samples within the same
batch. I also had a pretraining period of 30,000 timesteps
for the critic so that the critic and actor would have less in-
stability when training.

4. Experiments and Results

Because of the complexity of my model and environ-
ment, [ encountered a significant amount of difficulty train-
ing. One aspect of my results that completely confused me
was the movement of the agents to the corner of the map to
fight it out. Since there were only strong penalties for leav-
ing the center, I have no idea why the agents chose to stay in
the corners. Figure [3]shows an example of the agents trav-
eling to the corner. Initially I thought that this could be due
to vanishing gradients and the squashing of the position out-
put into the pixel range of the game, but the agent appears to
select the same position for both movement and placing the
damage zones, as well as selects varying corners in differ-
ent games. Interestingly enough, the agent appears to stop
using the projectile ability, as shooting any projectile would
not hit the opposing player since the projectile spawns out-
side of the players. Because of this difficulty in training

100/100

Figure 3. Both agents fighting in the bottom corner.

with the full action space, I repeatedly reduced the action
space of my player and opponent, ultimately resulting in
the player only being able to shoot projectiles and the oppo-
nent only being able to do nothing. Additionally, I gave the
agents full stamina regeneration to prevent stamina issues
from affecting the ability of the actor and critic to learn.
Unfortunately, this reduces my problem into a really small
action and state space, however, it still achieves the paper
goal of translating visual input into a state space using an
actor critic method and a self-play curriculum.

Comparing the results of my policy to a randomly acting
agent, the trained policy was able to kill the opponent in

seconds and the random policy was unable to kill the agent
within a minute. In terms of returns received, the trained
policy had average rewards of 295 over the course of 10
games, whereas the random policy agent received average
rewards of 44 over 10 games. These results are shown in
Table @l

Policy | Average Returns | Time to Kill (s)
Random 44 12
Trained 295 N/A

Table 1. Average returns and time to kill.

Figures [ and [5] show the actor and critic losses respec-
tively. The actor loss stedily decreases, but this makes sense
with a critic loss that continually increases. The critic loss
increase means that the critic is having a hard time accu-
rately predicting the rewards for different transitions. Due
to this variance, the actor has much uncertainty when cal-
culating updates. Due to the nature of the critic being used
in the actor update and the actor being used in the critic
update, the effects of these instabilities are compounding.
Even with these poor loss values, the returns over episodes
are incredible.
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Figure 4. Actor loss across timesteps.
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Figure 5. Critic loss across timesteps.

Figure [6] shows the average returns of an agent over
timesteps. Since an agent has 200 health with a health



regeneration rate of about 1 health every second, within a
timespan of 12 seconds, the agent can get a maximum dam-
age score of 210. The reward function rewards the agent
for every damage point inflicted, as well as 100 point if the
agent wins. Therefore, the maximum score that an agent
can get within a time period of less than 20 seconds is 310.
This means that the agent performs the maximal amount
of damage within the prescribed time and achieves maxi-
mum rewards. Even though the critic and actor have mas-
sive losses due to prediction difficulty, the agent was still
able to quickly dispatch the opponent. I am truly unsure as

o 10000 20000 30000 40000 50000 60000 70000 80000
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Figure 6. Returns over timesteps.

to how the agent can still achieve maximal results with a
poorly defined actor and critic, and am wondering whether
it is due to emergent properties or due to

5. Conclusion

This work demonstrates the feasibility of integrating
multiple neural network architectures (convolutional neural
network (CNN), long short-term memory network (LSTM),
an actor-critic framework) to train an agent capable of in-
teracting with and learning from a simulated game environ-
ment. While the resulting policy acts within a limited state
and action space, the toy game provides a structured, visu-
ally rich setting that captures some of the dynamics found
in real-world scenarios, offering the agent the possibility of
exhibiting spatial and temporal processing.

The results also highlight the inherent challenges in com-
bining these components. Training instabilities emerged
as a central difficulty, likely due to the simultaneous op-
timization of interconnected networks with shifting objec-
tives. Nonetheless, with an even simpler model, the agent
was able to learn a policy that maximized returns within a
given time window.

There are several avenues that I would like to pursue for
improving both stability and agent behavior. A persistent
issue observed was the agent’s tendency to cluster near the
corners of the map with a larger action space. I would like
to investigate the cause of this strategy, whether it be credit

assignment or reward-hacking. Additionally, with the dis-
crepancy between actor and critic performance and agent
performance, I would also like to look into if the simplic-
ity of the game allowed the agent to receive maximal re-
wards with a suboptimal policy. Lastly, I would like to ex-
plore more principled curriculum learning techniques. For
instance, progressively unmasking actions or gradually in-
creasing environment complexity might allow the agent to
fully experience and guide the agent toward more desirable
behaviors like maintaining a central position or learning
more nuanced tactics.
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