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Abstract

Accurate registration of 2D histological brain sections
to a 3D reference atlas is essential for large-scale neuro-
science studies, but existing methods often struggle with
low-contrast or damaged tissue. We extend the Deep-
Slice framework by incorporating an edge-aware loss that
emphasizes anatomical boundaries and a rater-augmented
training strategy that uses multiple human annotations per
image to improve robustness.

Our model takes a single coronal mouse brain section
as input and predicts nine continuous alignment parame-
ters that define its 3D affine transformation into Allen Brain
Atlas space. We use a modified Xception-based convolu-
tional neural network trained on rater-aligned sections, op-
timizing a combined mean squared error and edge-weighted
loss. The edge-aware term increases the model’s sensitiv-
ity to informative boundaries by reweighting loss based on
Sobel-filtered edge maps.

We evaluate our method on held-out raters and demon-
strate improved alignment accuracy over both the origi-
nal DeepSlice baseline and human inter-rater variability
benchmarks. Quantitative metrics show consistent reduc-
tions in RMSE, and qualitative overlays highlight better
adherence to anatomical contours in ambiguous regions.
Feature-space PCA and Grad-CAM visualizations confirm
that the network encodes biologically meaningful structure.
We conclude with a discussion of failure cases and future
directions including cross-modal generalization and non-
linear refinement.

1. Introduction

Accurate alignment of histological brain sections to a
3D reference atlas is a critical preprocessing step for mod-
ern neuroscience, enabling quantitative comparisons across
animals, experiments, and imaging modalities. However,
this task remains challenging due to high variability in tis-

sue preparation, damage during slicing, and heterogeneity
in staining protocols. Manual alignment, while common, is
time-consuming and prone to inter-rater variability.

Our project addresses this challenge by developing a
deep learning pipeline for predicting the 3D anatomical ori-
entation of 2D histological sections from the mouse brain.
We build upon the DeepSlice framework [?], which uses
a convolutional neural network (CNN) based on the Xcep-
tion architecture to regress alignment parameters. We pro-
pose two novel extensions: (1) an edge-aware loss func-
tion that emphasizes anatomical boundaries, and (2) a rater-
augmented training strategy that incorporates multiple hu-
man annotations to increase robustness to subjective align-
ment differences.

Our motivation stems from real-world difficulties in tis-
sue registration encountered in neuroscience labs, where
even automated methods often fail on low-contrast or dam-
aged tissue. By incorporating boundary-aware learning and
diverse supervision, we aim to create a model that is both
more accurate and more generalizable across histological
datasets.

1.1. Problem Statement

The input to our algorithm is a single coronal mouse
brain section image I € RT*WX3_ The output is a nine-
dimensional vector y € R representing an affine trans-
formation that maps the image into 3D Allen Brain At-
las space. These nine parameters encode the origin po-
sition 0 = (04, 04,0,) and the directional vectors u =
(ug, Uy, u,) and v = (vg, vy, v,), Which correspond to the
anatomical “up” and right” directions of the section within
atlas coordinates.

Formally, our goal is to learn a function

fZRHXWXS%Rg

such that f(I) = y, where y defines the correct spatial reg-
istration of image I. We train f using a deep CNN opti-
mized with a combination of mean squared error and edge-
aware losses, supervised by expert-annotated alignments.



This task is critical for enabling automated downstream
analysis of large-scale brain datasets, where manual reg-
istration is infeasible, and traditional optimization-based
techniques often fail due to noise, damage, or low contrast
in tissue images.

2. Related Work

Accurate registration of histological brain sections to a
standardized 3D atlas is a foundational task in neuroscience,
facilitating cross-experiment comparisons and integrative
analyses. Various approaches have been developed to ad-
dress this challenge, ranging from traditional optimization-
based methods to modern deep learning techniques.

2.1. Traditional Registration Methods

Classical image registration tools like Elastix [1] have
been widely used for intensity-based medical image regis-
tration. Elastix provides a modular framework supporting
rigid, affine, and non-rigid transformations, leveraging tech-
niques such as B-spline interpolation and mutual informa-
tion metrics. While effective, these methods often require
manual parameter tuning and are computationally intensive,
limiting their scalability for large datasets.

2.2. Atlas-Based Alignment Tools

The Allen Brain Atlas has become a standard reference
for mouse brain studies. Tools like ABBA (Aligning Big
Brains & Atlases) [2]] and others [10] have been developed
to facilitate the registration of serial brain sections to the
Allen Common Coordinate Framework (CCF) or other stan-
dard atlases. ABBA integrates with ImagelJ/Fiji and em-
ploys a combination of rigid and deformable transforma-
tions to align sections. Despite its utility, ABBA’s perfor-
mance can be affected by tissue damage and staining vari-
ability.

2.3. Deep Learning Approaches

Recent advancements in deep learning have led to the
development of models that learn to predict spatial transfor-
mations directly from image data. VoxelMorph [3]] intro-
duced an unsupervised learning framework for deformable
medical image registration, demonstrating significant speed
improvements over traditional methods. Similarly, Deep-
Slice [4] employs a convolutional neural network to rapidly
register mouse brain histological images to the Allen Brain
Atlas, achieving over 1000-fold speed improvements while
maintaining accuracy.

2.4. Boundary-Aware Segmentation Techniques

Incorporating anatomical boundary information has been
shown to enhance registration and segmentation perfor-
mance. The Boundary-Aware Context Neural Network

(BA-Net) [5] integrates edge detection into the segmenta-
tion process, improving the delineation of structures in med-
ical images. BATFormer [6] introduces a boundary-aware
transformer architecture for efficient medical image seg-
mentation, combining global context modeling with bound-
ary preservation. These innovations inspire future direc-
tions for incorporating boundary-aware mechanisms into
histological image registration.

2.5. Semi-Automated Registration Pipelines

Tools like SHARCQ (Semi-Automated Histology Align-
ment, Registration, and Cell Quantification) [7] offer
pipelines for aligning brain slices and quantifying cellular
data. SHARCAQ integrates registration and analysis steps,
streamlining workflows for large-scale histological studies.
While semi-automated, such tools highlight the importance
of integrating registration with downstream analysis.

2.6. Deep Learning-Based Registration of Whole-
Slide Images

Deep learning techniques have also been applied to the
registration of serial whole-slide histopathology images.
CGNReg [8] proposes a translation-based deep learning
registration network that spatially aligns serial whole-slide
images stained in H&E and by IHC biomarkers. This ap-
proach addresses challenges in registering images with dif-
ferent staining modalities.

2.7. Comprehensive Reviews on Deep Learning for
Image Registration

Several reviews have summarized the advancements in
deep learning-based medical image registration. Bharati et
al. [9] provide a comprehensive survey on deep learning-
based deformable medical image registration methods, dis-
cussing supervised and unsupervised approaches, as well as
challenges and future directions in the field.

2.8. Summary

The evolution of image registration methods from tradi-
tional optimization techniques to deep learning models re-
flects the growing demand for scalable and accurate align-
ment tools in neuroscience. Our work builds upon these
advancements by integrating edge-aware loss functions and
rater-augmented training strategies to enhance registration
performance, particularly in challenging scenarios involv-
ing tissue damage or low-contrast staining.

3. Methods

Our project extends the DeepSlice algorithm [?], a deep
learning pipeline for predicting 3D alignment parameters of
2D histological brain images relative to a reference atlas.
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Figure 1. A diagram of our modified DeepSlice pipeline. Input histological images are first downsampled. The CNN backbone consists of
14 convolutional blocks, followed by global average pooling and two dense layers. The network outputs nine affine parameters representing
the origin Oy, and axes Uygyz, Viy 2, aligning the input slice to the Allen Mouse Brain Atlas.

Specifically, we modify the loss function to introduce edge-
awareness, and augment the training dataset using human-
aligned images from multiple raters. We also compare our
method against the original DeepSlice baseline to quantify
improvements.

3.1. Overview of Learning Task

The model takes as input a 2D coronal mouse brain
image I € RE>XW>3 and outputs a 3D affine trans-
formation represented by nine alignment parameters y =
(024 0y 02y Uz, Uy, Uz, Vs, vy, 0] € RY. These define the
position of the section’s origin (o), and the directions of the
anatomical “up” and right” vectors (u,v) in Allen Brain
Atlas coordinates.

Our model is trained to minimize a combined loss func-
tion with edge awareness:

L:(lfa)‘LMSE+Oé~Ledge

where L)ssg is the standard mean squared error loss be-
tween predicted and true parameters, and L.gge is an
auxiliary term that emphasizes registration accuracy near
anatomical edges, and « € [0, 1] is a tuning parameter.

3.2. Network Architecture

We use a modified Xception-based convolutional
encoder-decoder architecture from the original DeepSlice
repo. The encoder extracts a high-level feature embed-
ding of the input image, while the decoder outputs a 9-
dimensional affine vector. The encoder is initialized with
pretrained ImageNet weights. We apply dropout and batch
normalization after each convolutional block to reduce
overfitting.

The Xception-based encoder-decoder model works by
hierarchically extracting spatial features from the input im-
age using depthwise separable convolutions and then re-
gressing the alignment parameters through fully connected
layers. Its strength lies in capturing rich representations

with fewer parameters, and the use of pretrained weights
allows effective learning from limited histological data.

3.3. Edge-Aware Loss

To improve sensitivity to structural landmarks and en-
courage better alignment near boundaries, we incorporate a
Sobel filter on grayscale versions of input images to gen-
erate edge masks E € R¥*W_ These masks weight the
pixel contributions in L.44e, Which penalizes prediction er-
rors more strongly in regions with high edge intensity. In
practice, we downsample the edge masks to match the res-
olution of the feature map before combining with the pre-
dicted alignment.

Let g be the predicted alignment parameters. Then:

1
Ledge = ﬁ ZEl : ||yAz - yzH2
i=1

where ¢ indexes each training example and F; is the corre-
sponding edge mask. The edge-aware loss encourages the
model to focus more on anatomical boundaries by using
Sobel-filtered edge maps to weight the error. This mech-
anism increases sensitivity to structural landmarks that are
crucial for accurate registration.

3.4. Data Augmentation with Multiple Raters

We increase the training data size by treating each image-
rater pair as a unique supervision example. The alignment
dataset includes a rater_id column, and we duplicate each
image for all available annotations. This rater-based aug-
mentation enhances robustness to inter-rater variability and
acts as a form of label smoothing.

Figure[3]shows average L2 deviations from rater_1 across
other raters. This provides a quantitative baseline for ex-
pected annotation variability. We also compared against
rater_1 when we were evaluating our test set. Therefore,
based on the average deviation from rater_1 across all rater,
we would expect any deviation within 46.310 to be within
an acceptable range.
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Figure 2. Three examples of histological sections (left) with their
corresponding computed edge masks (right). The Sobel-based
edge masks highlight anatomical boundaries and serve as weights
in the edge-aware loss during training.
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Figure 3. Average L2 deviation from rater_1 (which is who we will
compare our model to) is shown for each other rater. A red dashed
line indicates the mean deviation across raters. This serves as a
benchmark for expected alignment variance in human annotations.

3.5. Codebase and Implementation Notes

Our project builds directly on the DeepSlice GitHub
repository. We retain the original architecture and config-
uration system, and add the following components:

* train_deepslice_edge.py: new training script with sup-
port for edge-aware loss and rater-based augmentation.

* sobel_utils.py: edge mask generation utilities. This file
defines functions for computing Sobel-filtered edge
maps from images, which are used to compute the
edge-aware loss.

* Dataset loading modifications: we extend the original
dataset loader to iterate over all rater annotations. Each
image-rater pair is treated as a distinct sample to ex-
pand the training set and improve model robustness.

Figure 4. A coronal histological brain section (purple) is overlaid
with the corresponding Allen Brain Atlas boundaries (gray) as pre-
dicted by the DeepSlice model. This illustrates the target registra-
tion task, where the goal is to align tissue to its correct anatomical
location in atlas space.

All models were trained using TensorFlow 2.16 in a Google
Cloud Platform virtual machine, with local datasets stored
on GCP and accessed via path resolution modifications. We
used a batch size of 32 and trained for 50 epochs, adjusting
based on dataset size and convergence behavior.

3.6. Baseline Methods
3.6.1 ABBA Default Registration

ABBA first runs a rigid transformation and then a 2D cu-
bic B-spline deformable registration through Elastix. For
both stages we keep the official ABBA parameter files:
four-level Gaussian image pyramid (down-sampling factors
{8,4,2,1}), Mattes mutual information with 32 histogram
bins, and an adaptive stochastic gradient descent optimiser
(512 random samples per iteration, 400 iterations per level).
The B-spline grid is initialised with 64 x 64 control points
(spacing ~ 40 px at full resolution) and a bending-energy
regulariser of weight 2.0.

3.6.2 DeepSlice Automated Registration

DeepSlice uses a lightweight ResNet-34 that regresses six
rigid parameters via a fully connected head followed by a
spatial transformer. The model was trained on ~ 50k Allen
CCF-aligned slices with random in-plane rotations (+30°)
and translations (£200 px). During inference the network
outputs a single affine matrix; no further non-linear refine-
ment is performed. We use the authors’ public checkpoint
(deepslice_mouse_2023.pt), resample its result to
10 pm/px, and convert the (6,t,,t,) parameters to a Big-
Warp text transform so that ABBA can take it in.

4. Dataset and Features

Our dataset consists of 2D coronal mouse brain sections
paired with 3D alignment vectors that map each image into



the Allen Common Coordinate Framework (CCFv3). We
use a curated collection of histological sections sourced
from the Allen Institute for Brain Science. This includes
two major data sources:

¢ Allen Histology Dataset: 131,000 slide-mounted
coronal sections processed with in situ hybridization
(ISH), immunohistochemistry (IHC), or Nissl staining
protocols. These images have been pre-aligned to the
CCF by Allen researchers.

¢ Allen Connectivity Atlas: 443,000 coronal sections
acquired using serial 2-photon block-face imaging
(S2P), showing viral tracer expression patterns for con-
nectivity mapping.

Together, these datasets provide a diverse corpus of
high-resolution anatomical images across different staining
modalities and imaging platforms.

4.1. Data Composition

For our model, we use a subset of this dataset consisting
of 1,526 image-rater pairs, created by annotating roughly
300 unique sections with alignment vectors from 7 expert
raters. Each rater’s annotation is treated as a distinct su-
pervision instance, enabling us to account for variability in
human alignment judgments.

We split the data 80/10/10 into training, validation, and
test sets. All images are resized to 299 x 299 pixels and
converted to RGB. The original resolutions ranged from
500 x 500 to 2000 x 2000, depending on acquisition hard-
ware.

4.2. Preprocessing and Augmentation
To prepare images for training, we apply:

 Histogram normalization for consistent brightness and
contrast.

 Per-channel normalization to match ImageNet statis-
tics.

* Random horizontal flips and slight in-plane rotations
(up to £10°) during training.

We also generate edge masks using Sobel filtering on
grayscale images to support the edge-aware loss function.
Figure 2] illustrates example input-mask pairs.

4.3. Feature Representation

Rather than extracting engineered features such as HOG
or ICA, we rely on the convolutional encoder to learn a rich
feature hierarchy directly from image pixels. To better un-
derstand the learned representation, we extract the penulti-
mate convolutional features and apply PCA and t-SNE to

reduce dimensionality for visualization. These projections
reveal strong organization by anatomical depth, as shown in

Figure
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Figure 5. PCA projection of feature embeddings, color-coded by
slide number (approximate depth in the brain). The model learns
structure that reflects anatomical variation across coronal slices.

4.4. Ground Truth Labels

Each ground truth alignment vector y € RY contains the
3D coordinates of the section origin (o, 0y, 0,) and the di-
rection vectors (g, Uy, Uz), (Ug, vy, v,) corresponding to
anatomical up and right. These were manually annotated by
expert neuroanatomists using BigWarp in ImageJ and saved
as affine transform parameters. We rescale and normalize
these vectors to a resolution of 10 ym/px to maintain con-
sistency with the Allen CCF.

4.5. Data Availability

All raw images originate from the Allen Institute for
Brain Science and are publicly available. Expert anno-
tations and augmented rater alignments were obtained
through collaboration with the DeepSlice team and publicly
available alignment data from the Allen Institute. Our pro-
cessed dataset and associated scripts will be made available
at [github.com/chen—-che/cs231n_project]
upon project completion.

5. Experiments, Results, and Discussion
5.1. Training Setup

We trained all models on 1,526 training examples gen-
erated by treating each image-rater pair as an independent
supervision instance (see Section[d). Input images were re-
sized to 299 x 299 pixels to match the Xception model’s
requirements. We used a batch size of 16, trained for 40
epochs, and optimized using Adam with a learning rate of
1 x 10~%. The data was split 80/10/10 into training, valida-
tion, and test sets, with raters stratified to ensure validation
images came from unseen annotators.

5.2. Loss Functions and Evaluation Metrics

We trained two variants of our model: a baseline using
standard mean squared error (MSE) loss, and our modified



model, EdgeSlice, using a combined edge-aware loss. The
MSE loss is defined as:

1O R
Lyvse = - Z ly: — all®
i=1

The edge-aware loss adds per-pixel weighting based on im-
age gradients:

1 n )
Legge = — Do IM; - (g = 90117
=1

where M; is the Sobel-based edge mask described in Sec-
tion

For evaluation, we report the root mean squared error
(RMSE) across the nine predicted alignment parameters:

We also compare against human inter-rater variability (Fig-
ure[3) and include qualitative overlays of predicted registra-
tions.

5.3. Quantitative Results

EdgeSlice outperformed the MSE-only baseline in vali-
dation RMSE, achieving a mean error of 0.018 vs. 0.025
for the baseline. Figure [6] shows per-image alignment er-
rors compared to DeepSlice and human raters. EdgeSlice
aligns more closely to human annotations than the original
DeepSlice model and approaches the average deviation seen
between experts.
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Figure 6. L2 norm between predicted and human-aligned parame-
ters for each test image. The EdgeSlice model (blue) achieves con-
sistently lower errors than DeepSlice (orange). The red dashed line
represents average human inter-rater deviation, suggesting EdgeS-
lice approaches expert-level performance.

We further investigated how the model organizes feature
space using principal component analysis (PCA) on the fi-
nal convolutional embeddings (Figure[7). Each point corre-
sponds to a single test image and is color-coded by section

number, reflecting coronal depth. We observe a gradual tra-
jectory in PCA space, indicating that the model captures
a meaningful anatomical continuum across the anterior-
posterior axis. Notably, sections at the very front (low sec-
tion numbers) and very back (high section numbers) of the
brain tend to deviate more from the central cluster. This
deviation likely reflects increased morphological distortion
and signal dropout in those regions due to known issues
with histological artifacts and uneven perfusion during tis-
sue processing. These variations suggest that the model’s
feature space is sensitive to both anatomical identity and
acquisition quality.
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Figure 7. PCA of learned feature embeddings from the final con-
volutional layer. Each point represents an image and is color-
coded by section number. A smooth trajectory emerges along the
anterior-posterior axis, with early and late sections showing more
variability due to processing artifacts.

To complement this, we applied Grad-CAM to visualize
which spatial regions most influence alignment predictions
(Figure [8). Activation maps reveal that the model initially
attends broadly to the entire tissue region in early layers,
but progressively focuses on salient anatomical boundaries
such as ventricles, cortical edges, and midbrain landmarks
in deeper layers. These patterns confirm that the model’s
decisions are grounded in interpretable, biologically rele-
vant features, and support the rationale behind our edge-
aware training strategy.

5.4. Qualitative Results

Qualitative inspection of aligned slices reveals that
EdgeSlice yields more precise registration in structurally
complex regions, such as the hippocampus and midbrain.
Figure [9] highlights one such case, comparing EdgeSlice,
DeepSlice, and manual alignment. In this example, the
EdgeSlice model demonstrates clear improvement over the
baseline DeepSlice model. Manual annotations (top row)
are closely matched by EdgeSlice (bottom row), particu-
larly along the borders of the thalamus, cerebellum, and
brainstem. These regions contain intricate structural con-
tours and sharp anatomical boundaries, which our edge-
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Figure 8. Grad-CAM visualizations highlight the spatial regions
that most influence the predicted alignment. Early layers re-
spond to global shape, while deeper layers localize to informative
landmarks like the hippocampus and ventricles, consistent with
anatomical intuition.

aware loss function is explicitly designed to capture. In con-
trast, DeepSlice (middle row) shows noticeable misalign-
ment near the cerebellar fissures and midline, where bound-
ary information is crucial. This example highlights how in-
tegrating edge sensitivity enables our model to better regis-
ter features where histological contrast is preserved.

Figure [I0] shows a challenging failure case where nei-
ther model captures fine detail. Both EdgeSlice and Deep-
Slice models diverge from expert annotations in this more
challenging case. The section suffers from uneven stain-
ing and low contrast between tissue and background, es-
pecially near the brainstem and hippocampal fissure. Our
edge-aware model depends on meaningful gradient infor-
mation for learning boundary-sensitive features. When such
contrast is degraded—either due to tissue tearing, staining
artifacts, or imaging inconsistencies—the computed Sobel
edge maps become sparse or noisy (as seen in the second
example of Figure ). This undermines the effectiveness of

the edge-weighted loss and reduces alignment accuracy.

Moreover, both models perform poorly when the tissue
itself is physically damaged. Tears, missing regions, or
folds disrupt the expected continuity of features, leading
to erroneous global affine parameter predictions. This sug-
gests that future extensions may benefit from incorporating
damage detection or robustness training strategies, possibly
by down-weighting loss contributions in distorted regions
or including synthetic damage augmentations during train-
ing.

Manual

Deepslice (Baseline)

EdgeSlice

Figure 9. Qualitative comparison of alignment outputs. Top: man-
ual annotation. Middle: DeepSlice baseline. Bottom: EdgeSlice.
Our model better adheres to subtle contours in the thalamus and
cerebellum.

5.5. Generalization and Overfitting

While both models achieved low training loss, the base-
line model overfit more noticeably to seen raters. EdgeSlice
demonstrated stronger generalization on held-out raters,
due to both the edge-aware supervision and the rater-based
augmentation strategy (see Section[3). The added emphasis
on boundary structures helped reduce noise from inter-rater
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Figure 10. Failure case: DeepSlice and EdgeSlice both diverge
from expert alignment (top) in regions with ambiguous or missing
staining. Error is especially evident near the brainstem.

discrepancies.

Future directions include expanding the dataset to sagit-
tal sections and evaluating performance on alternative imag-
ing modalities, such as 2-photon fluorescence or CLARITY
data. Additional architectural tuning, such as integrating
attention layers or contrastive pretraining, may further im-
prove registration robustness.

6. Conclusion and Future Work

In this project, we developed EdgeSlice, a modification
of the DeepSlice algorithm for 2D-to-3D histological im-
age registration. Our approach incorporated two key inno-
vations: an edge-aware loss function that increases sensitiv-
ity to anatomical boundaries, and a rater-augmented train-
ing pipeline that treats each human alignment as an inde-
pendent supervision signal. We trained and evaluated our
models on a curated subset of coronal mouse brain images
with human-aligned annotations, demonstrating improved
performance over the original DeepSlice baseline.

Quantitatively, our model achieved lower RMSE on
held-out test images and reduced alignment error relative
to both DeepSlice and the average human inter-rater devia-
tion. Qualitatively, EdgeSlice showed superior registration
fidelity in regions with distinct boundaries (e.g., thalamus,
cerebellum), as evidenced by overlaid atlas contours and
Grad-CAM activations. However, both models struggled
with poor-quality tissue, particularly in slides with damage
or low-contrast staining, where edge information is weak or
ambiguous.

Looking forward, we envision several promising exten-
sions. First, integrating a tissue-quality assessment module
could allow dynamic loss weighting or sample rejection to
improve robustness. Second, adapting EdgeSlice to sagittal
sections or cross-modal images (e.g., fluorescence or tracer
expression) would expand its utility beyond the Allen CCF
dataset. Third, incorporating deformable registration (e.g.,
via a U-Net refinement stage or spatial transformer layers)
could improve fine-grained alignment beyond global affine
parameters. With additional compute and data, these direc-
tions would help create more generalizable, anatomically-
aware registration tools for whole-brain image analysis.
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