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Abstract

Skin cancer is one of the most common and deadly can-
cers worldwide, yet early detection significantly improves
patient outcomes. While state-of-the-art computer vision
models for skin lesion classification have shown strong
performance, they are predominantly trained on dermo-
scopic images—captured by dermatologists using special-
ized equipment during clinical exams, limiting their acces-
sibility in everyday settings. In this work, we aim to close
the domain gap by investigating whether skin lesion mod-
els can be adapted to perform effectively on images cap-
tured with consumer-grade smartphone cameras, enabling
accessible, at-home risk assessment. We propose a two-
stage transfer learning pipeline: a classifier is first trained
on clinical images from the ISIC archive (taken with DSLR
cameras) and then fine-tuned on the MIDAS dataset, a real-
world collection of iPhone-captured clinical images. Our
final model achieves an accuracy of 0.70, ROC-AUC of
0.79, and recall of 0.86 when tested on smartphone images,
demonstrating promising performance in this low-resource
setting. In the process, we also develop a baseline classi-
fier on ISIC clinical images alone, achieving 0.99 accuracy,
0.97 ROC-AUC, and 0.94 recall—competitive with leading
approaches, despite operating without dermoscopic input.

1. Introduction

Skin cancer represents a major global health concern,
with high incidence rates and fatal outcomes if not detected
early, yet when caught early, it is highly treatable - mak-
ing timely and accurate diagnosis critical to patient sur-
vival. In clinical practice, diagnosis typically depends on
dermoscopic images captured using specialized equipment
operated by trained dermatologists. These high-resolution
images enable detailed inspection of skin lesions, but the
equipment is costly and not widely available, limiting its
use to well-resourced medical settings. As a result, there is
a growing interest in computer vision models that can sup-
port or augment clinical diagnosis.

Recent advances in deep learning have achieved impres-
sive performance in skin lesion classification, with convolu-

tional neural networks (CNNs) trained on dermoscopic im-
ages reaching or even surpassing dermatologist-level accu-
racy. However, these models overwhelmingly rely on der-
moscopy, namely high-quality, magnified images captured
using specialized tools, limiting their usefulness in every-
day, real-world applications. In contrast, clinical images,
which broadly refers to images of skin lesions taken with a
commercial camera or smartphone camera operated by any
person, are far more accessible to the general population,
but significantly harder for models to interpret due to many
factors, including inconsistent lighting, varying angles, and
poor image quality.

Our motivation is to bridge this gap, namely answering
the question, ”can we build a model that performs accu-
rate skin cancer classification on smartphone-grade images,
thereby enabling accessible at-home risk assessment?” We
aim to reduce the reliance on dermoscopic images, which
are both expensive and require trained professionals to col-
lect. We want to do this by adapting models to function well
on widely available clinical images.

In this project, the input to our algorithm is a clinical
image of a skin lesion, captured using a consumer smart-
phone at a standardized 6-inch distance. These images
come from the MIDAS dataset and are preprocessed with
center-cropping, resizing to 224×224 pixels, and normaliza-
tion using ImageNet statistics. We do not use dermoscopic
input during training or inference for this model. We use
a pretrained ConvNeXt-Tiny as the CNN backbone, with a
custom MLP head for classification. The model is trained
in two stages: first on DSLR-quality clinical images from
the ISIC dataset, then fine-tuned on real-world smartphone
images from MIDAS to adapt it to noisy data. The output of
our model is a binary prediction indicating whether the in-
put lesion is malignant (label = 1) or benign (label = 0). To
evaluate the model, we report metrics including accuracy,
recall, ROC-AUC, precision, and F1 score—emphasizing
recall to minimize false negatives in a medical context.

This work focuses on improving the robustness of skin
cancer classification models in realistic, non-clinical set-
tings. By training on high-quality clinical images and fine-
tuning on smartphone-captured data, we aim to evaluate
how well a state-of-the-art CNN architecture can general-
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ize to lower-quality inputs. Our results contribute to un-
derstanding the limitations and potential of deep learning
models when applied to accessible image modalities, and
highlight important considerations for deploying such sys-
tems outside controlled clinical environments.

2. Related Works

Performing early-stage skin cancer detection with deep
learning algorithms has been a popular topic of study. The
vast majority of such studies use dermoscopic images and
have achieved impressive results, often surpassing human
physician in terms of accuracy. Typically, input images
undergo preprocessing to normalize, denoise, and remove
artifacts (e.g. hair, blood vessels) from the data before be-
ing passed into feature extraction, sequentialization, embed-
ding, and classification networks.

2.1. Skin Cancer Detection Using Dermoscopic Im-
ages

Between 2018 and 2022, a total of 40 published stud-
ies applied AI-based approaches to skin cancer detection,
and among them 37 were based on dermoscopic images.
[9] Popular publicly available datasets used were the In-
ternational Skin Imaging Collaboration Challenge (ISIC)
– which has 5 datasets for each year the challenge was
hosted from 2016 to 2020 – Human Against Machine with
10,000 images (HAM10000), and PH2 with 200 images.
[10, 13, 5] Despite achieving significant success in studies,
models trained on dermoscopic images still have problems
to overcome before becoming ready for practical applica-
tions. One such problem is that public datasets are often
small in size due to the high cost of obtaining dermoscopic
images in practice. A number of algorithms have very high
accuracy on small datasets (n < 5000), leading to concerns
of overfitting. [6]

2.1.1 Convolution-Neural-Network-Based Models

Deep Convolution Neural Networks (DCNNs) and DCNN
variants, such as EfficientNet and DenseNet, are the most
popular architecture for this task and have consistently out-
performed physicians and achieving over 95% accuracy on
public datasets. [6]

Notably, Singh et al. achieved an average 99.02% accu-
racy on the ISIC datasets. First, images are pre-processed
by removing artifacts (such as hair follicles and blood ves-
sels) and enhanced using histogram equalization. Next, pre-
processed images undergo segmentation, which was accom-
plished by a novel thresholding-based method along with a
pentagonal neutrosophic structure to form a segmentation
mask of the suspected skin lesion. Finally, the segmented
images are passed to the classifier, which is a DCNN with

custom architecture trained on the pre-processed and aug-
mented dataset without segmentation. [11]

Other DCNN-based classifiers also achieved impressive
results. Jaisakthi et al. leveraged EfficientNet models
through transfer learning to achieve an AUC of 96.81%
on the ISIC datasets. [3] Kaur et al. used a DCNN and
achieved accuracy as high as 90.42% on the ISIC 2020
dataset. [4] Nawaz et al. proposed a hybrid framework
that combines faster region-based convolutional neural net-
works (RCNNs) with fuzzy k-means clustering (FKM) for
classification. Their classifier achieved average accuracy of
95.40%, 93.1%, and 95.6% on the ISIC 2016, ISIC 2017,
and PH2 datasets. [8]

2.1.2 Transformer-Based Models

Studies have also explored transformers in skin cancer de-
tection from dermoscopic images. Xin et al. proposed a
vision transformer network named SkinTrans that achieved
94.1% accuracy on a private dataset of 1113 dermoscopic
images. The authors first pre-trained their model on the
HAM10000 dataset, then applied transfer learning to the
private dataset. During preprocessing, z-score normaliza-
tion where z = x−µ

σ and data augmentation, such as hori-
zontal and vertical flip, random crop, random rotation, and
color jitter, were applied. The images are serialized with a
multi-scale sliding window, then embedded with patch em-
bedding and fed into a Vision Transformer (ViT). [14]

2.2. Skin Cancer Detection Using Clinical Images

Skin cancer detection machine learning models that use
clinical images exist, but they are comparatively fewer in
quantity than studies using dermoscopic images. Clinical
images are taken with day-to-day cameras, such as ones at-
tached to smartphones, and can be taken far away from the
target lesion. Clinical images in practice often include ar-
tifacts such as clothing and background objects, lack iden-
tification of target lesion, and be out of focus. These char-
acteristics pose significant challenge for machine learning
models to learn accurate skin cancer detection.

Popular datasets used by studies before 2020 are DermIS
and Dermquest. Dermquest has been disabled by the time
of this writing. DermIS is an European dermatology at-
las for healthcare professionals and contains approximately
500 skin lesion images.

Nasr-Esfahani et al. conducted a melanoma detection
study using clinical images in 2016. The authors proposed
a custom CNN architecture where the final layer is a fully-
connected layer that outputs binary classification. Prepro-
cessing efforts included illumination correction, segmenta-
tion, and gaussian filter to smooth the skin area outside of
the lesion. The group achieved 81% accuracy over a private
dataset of 170 clinical images. [7]
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Another study trained a CNN-based model on the
HAM10000 dataset but tested its performance on clinical
images, which performed on par with physicians in terms
of sensitivity. [1]

3. Methods
3.1. KNN

The K-Nearest Neighbors algorithm is a non-parametric
classification method that operates on the principle of sim-
ilarity. Given a feature vector x ∈ Rd from our ResNet18
feature extractor, KNN classifies it by finding the k clos-
est training examples in the feature space and assigning the
most common class among these neighbors.

Mathematically, for a test point x, we:

1. Calculate the distance to all training points xi in the
feature space:

d(x, xi) = ∥x− xi∥2

2. Find the k nearest neighbors Nk(x) based on these dis-
tances.

3. Assign the class label y using majority voting:

y = argmax
c

∑
i∈Nk(x)

I(yi = c)

where I is the indicator function and c represents the pos-
sible classes.

3.2. ConvNeXt Feature Extractor

We use a pretrained ConvNeXt-Tiny model as the back-
bone of our feature extraction pipeline. ConvNeXt is a
modern convolutional neural network architecture inspired
by Vision Transformers but retains efficient convolutional
designs. We remove the final classification layer and use
the remaining network as a fixed feature extractor to obtain
compact, semantically rich embeddings of skin lesion im-
ages.

For input and normalization, we see the following. Let
the input image tensor be X ∈ RB×3×224×224, where B is
the batch size, and 224×224 is the image resolution with 3
RGB channels. Each image is normalized using ImageNet
statistics:

Xnorm =
X − µImageNet

σImageNet

where µImageNet = [0.485, 0.456, 0.406] and σImageNet =
[0.229, 0.224, 0.225].

Moving on to feature extraction, the normalized image
is passed through the ConvNeXt-Tiny encoder to obtain a
feature map:

F = fConvNeXt(Xnorm), F ∈ RB×C×H×W

where C is the number of output channels, and H,W are
the spatial dimensions of the feature map.

To reduce the spatial dimensions, we apply global aver-
age pooling:

f =
1

HW

H∑
h=1

W∑
w=1

F [:, :, h, w], f ∈ RB×C

This produces a fixed-length feature vector f for each
image. This algorithm leverages transfer learning by
reusing pretrained weights from ImageNet that already en-
code meaningful low-level and mid-level visual features.
The hierarchical structure of ConvNeXt allows it to extract
multi-scale patterns from skin lesion images. The global
average pooling step ensures spatial invariance while pro-
ducing compact feature embeddings, which are effective for
downstream tasks like binary classification.

3.3. MLP

A multi-layer perceptron (MLP) is a fundamental type
of feedforward neural network composed of one or more
layers of affine transformations followed by non-linear ac-
tivation functions. Each layer performs a transformation
of the form f(x) = Wx + b, and non-linearities such as
ReLU are applied to enable the network to model complex,
non-linear decision boundaries. When stacked, these layers
form a universal function approximator, capable of learning
a wide range of mappings from input to output spaces.

In our project, we use a two-layer MLP as a classification
head on top of features extracted by a pretrained ConvNeXt-
Tiny model. The input to the MLP is a feature vector
x ∈ R512 generated from the global average pool layer
of the backbone. The first linear layer maps this to a 256-
dimensional hidden representation, followed by a ReLU ac-
tivation: h1 = ReLU(W1x + b1), where W1 ∈ R256×512.
To regularize training and prevent overfitting, we option-
ally apply dropout with probability 0.5 after the ReLU layer.
The resulting representation is passed through a second lin-
ear layer producing a scalar logit ŷ = W2h1 + b2, where
W2 ∈ R1×256 To train the MLP, we use the binary cross-
entropy loss with logits:

L(y, ŷ) = − 1

N

N∑
i=1

[yi log(σ(ŷi)) + (1− yi) log(1− σ(ŷi))] ,

where yi ∈ {0, 1} is the ground truth label and σ(·) denotes
the sigmoid function. The model is optimized using Adam
with a learning rate of 10−4 and weight decay λ = 10−5.
During inference, we apply a threshold of 0.5 to σ(ŷ) to
obtain a binary classification of the lesion as benign or ma-
lignant.
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3.4. ResNet

Figure 1. Illustration of the architecture of a residual block.

Residual Network (ResNet) is a convolutional neural
network structure characterized by the depth of its archi-
tecture (ie. stacking many convolutional layers) and the
use of skip connections (also called residual connections)
to prevent vanishing gradients caused by the architecture’s
depth. ResNet learns a residual function F (x) such that
at each residual block (Figure 1) the model learns H(x) =
F (x)−x, which allows the model to take a shortcut between
convolutional layers in case of vanishing gradients, instead
of learning a direct mapping H(x). [2] In our implementa-
tion, we used a pretrained ResNet18 variant, which implies
a network of 18 convolutional layers. We also customize the
fully-connected layer into a 2-layer MLP network to per-
form classification.

3.5. EfficientNet

EfficientNet is a family of neural networks that scale
model depth, width, and input resolution in a principled way
using a compound scaling method. Introduced by Tan and
Le [12], EfficientNet achieves strong performance across
a range of computer vision benchmarks while using signifi-
cantly fewer parameters and FLOPs compared to traditional
architectures. The baseline model, EfficientNet-B0, is built
around inverted bottleneck blocks and uses mobile-friendly
depthwise separable convolutions, making it computation-
ally efficient while retaining expressive power.

In our project, we use EfficientNet-B0 pretrained on Im-
ageNet as an alternative backbone to ConvNeXt. We re-
place the original classification head, which originally maps
to 1000 ImageNet classes, with a new binary classification
head tailored to our task. Specifically, we substitute the fi-
nal classifier with a dropout layer (with probability 0.2) fol-
lowed by a fully connected layer that outputs a single logit.
The model is trained end-to-end using the Adam optimizer
with a learning rate of 10−4, and binary cross-entropy loss
with logits is used to supervise learning. We also apply a
learning rate scheduler (ReduceLROnPlateau) that lowers

the learning rate when validation accuracy plateaus. Dur-
ing training, we fine-tune all weights in the network, and
the best-performing model on the validation set (based on
accuracy) is saved for evaluation.

4. Dataset and Features
The data used for this analysis came from two datasets–

the MIDAS dataset, which contains smartphone images in
a variety of angles and lighting conditions, and the ISIC
archive, which contains high resolution clinical images.

4.1. MIDAS Dataset

The MIDAS dataset is a prospectively gathered dataset
with paired clinical and dermoscope images. Clinical im-
ages were taken on smartphone cameras from varying dis-
tances and under varied lighting conditions. After filtering
out controls (which had no associated clinical metadata),
dermoscopic images, and duplicate images per patient, we
were left with a dataset of 634 clinical images (266 malig-
nant, 368 benign).

Figure 2. Midas pair

Figure 3. ISIC pair

Figure 4. Cropped Midas pair
Figure 5. Comparison of MIDAS and ISIC clinical images

In addition to using the raw MIDAS images, we also
sought to determine whether cropping into the lesions
would standardize the images, remove artifacts, and im-
prove performance. Therefore, we chose a subsection of
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images that were taken at no greater than 6 inches away,
manually cropped to the lesion, and removed low-quality
images–images for which the lesion was out of focus or
blurry, which left us with a dataset of 590 images (230 ma-
lignant and 360 benign). In total, we ended up with two MI-
DAS datasets: a large uncropped dataset and a small manu-
ally cropped dataset.

4.2. ISIC Dataset

Given that our dataset of cropped MIDAS images was
quite small, we sought to develop a classifier on the ISIC
archive. The ISIC archive is the largest archive of qual-
ity controlled skin cancer images. Though many images in
the dataset are dermoscopic images, the ISIC archive does
contain a collection of 3,597 clinical images taken on high
resolution DSLR cameras. As a result, the ISIC dataset is
both larger as well as more standardized than the MIDAS
dataset, which makes it amenable to develop a classifier to
fine tune for MIDAS. Notably, in addition to images labeled
”malignant” or ”benign,” the ISIC archive also contains im-
ages labeled as ”indeterminate,” meaning that the diagnosis
is ambiguous or uncertain. We filtered out these images,
as is common practice in similar papers using ISIC data,
resulting in a dataset of 2,866 skin lesion images (1153 ma-
lignant and 1713 benign). Figure 5 shows some examples
that highlight the differences between each dataset.

4.3. Dataset Preprocessing and Principal Compo-
nent Analysis

All data were normalized to the ImageNet mean and
standard deviation. Data augmentation was applied on the
training sets within each dataset. For the ISIC images, we
applied random cropping, horizontal flipping, and color jit-
ter. For the MIDAS images, we applied random cropping
and horizontal flipping–applying color jitter worsened our
performance on our validation set so it was not applied.

To assess the feasibility of applying transfer learning
from ISIC clinical images to MIDAS smartphone images,
we conducted a series of visual analyses comparing the two
domains. Specifically, we examined both the raw pixel-
level image distributions and the learned feature representa-
tions extracted from a pretrained ConvNeXt encoder. To re-
duce the high-dimensional image and embedding data into
a human-interpretable format, we applied Principal Com-
ponent Analysis (PCA), enabling us to visualize potential
differences or overlaps in the feature space between the two
datasets. Interestingly, the visualizations revealed a sub-
stantial degree of overlap between the ISIC and MIDAS
images, both in raw pixel space (Figure 6) and in the en-
coder feature space (Figure 7)—suggesting that despite dif-
ferences in camera hardware, the underlying lesion charac-
teristics are sufficiently similar to support effective transfer
learning.

Figure 6. PCA plot of raw pixel values across the MIDAS (cropped
and uncropped) and ISIC data

Figure 7. PCA plot of ConvNeXt encoded features across the MI-
DAS (cropped and uncropped) and ISIC data

5. Experiments

To develop an effective model for lesion classification on
the MIDAS dataset, we began by conducting experiments
using the raw, uncropped MIDAS images. Next, we lever-
aged the high-quality ISIC dataset to train a baseline model,
and subsequently applied transfer learning by fine-tuning
this model on the cropped MIDAS images. Cropping the
MIDAS images helped align them more closely with the
visual characteristics of the ISIC dataset, thereby making
transfer learning more applicable and potentially more ef-
fective.

All models were evaluated using accuracy, precision, re-
call, and the area under the receiver operating characteristic
curve (ROC-AUC). Accuracy is defined as the proportion
of correctly classified samples among all samples:
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Accuracy =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false posi-
tives, and FN is the number of false negatives. Precision
measures the proportion of true positive predictions among
all positive predictions:

Precision =
TP

TP + FP

Recall (also known as sensitivity) quantifies the propor-
tion of actual positive samples correctly identified by the
model:

Recall =
TP

TP + FN

Finally, the receiver operating characteristic area under
the curve (ROC-AUC) summarizes the model’s ability to
discriminate between classes across all classification thresh-
olds. The ROC curve plots the true positive rate (recall)
against the false positive rate:

False Positive Rate =
FP

FP + TN

and the ROC-AUC is the area under this curve, with
values closer to 1 indicating better discriminatory perfor-
mance.

To select the final models for evaluation on the test set,
we prioritized a combination of receiver operating charac-
teristic area under the curve (ROC-AUC) and recall metrics
based on performance on the validation set. ROC-AUC was
chosen as an assessment of overall classification ability–
although ROC-AUC can be misleading in the case of class
imbalance, our classes were well balanced meaning that
ROC-AUC was a good measure of overall importance.

Recall was given special emphasis due to its criti-
cal clinical importance. In medical imaging applica-
tions—particularly in cancer detection—recall represents
the true positive rate, indicating the proportion of malig-
nant cases correctly identified by the model. Emphasizing
recall helps reduce the incidence of false negatives, which
is vital in diagnostic scenarios where failing to detect a
malignant lesion could have severe consequences. Conse-
quently, models demonstrating both high recall and compet-
itive ROC-AUC were selected for final testing and down-
stream analyses.

5.1. Baseline MIDAS Data

In order to find the best model for our MIDAS data, we
first ran our experiments on the raw (uncropped MIDAS
images). Specifically, we first sought to evaluate which
feature encoders worked best, evaluating using ResNet18,

ResNet50, EfficientNet, and ConvNeXt, and passing the la-
tent embeddings into our MLP. All models used the Adam
optimizer with a learning rate of 1e-4 and weight decay of
1e-5. The Adam optimizer, which provides stable and con-
sistent parameter updates due to its combination of Ada-
Grad and RMSProp was used because we observed oscil-
lating and unstable training loss. To address potential over-
fitting, we also added dropout to our MLP head, with a
dropout probability of 0.5. We trained the model on 10
epochs and then selected our best results given performance
on the validation set. At this stage, we trained all mod-
els with the ConvNeXt backbone unfrozen to allow fine-
tuning, given that ConvNeXt was pretrained on general im-
ages rather than clinical imaging data.

5.2. ISIC Dataset

Because we weren’t seeing high performance among dif-
ferent feature extractors, we then decided to develop a clas-
sifier on the ISIC database to compare performance and as
well as to fine tune our MIDAS model on. In order to al-
low for smooth gradient updates and minimize overfitting,
we used the Adam optimizer, learning rate of 1e-4, weight
decay penalty of 1e-5, dropout probability of 0.5. We addi-
tionally trained the model on 10 epochs with the ConvNeXt
backbone unfrozen, selecting the best model based on vali-
dation set performance.

5.3. Transfer Learning on the Manually Cropped
MIDAS Dataset

Our next experiment was to fine-tune the ISIC-trained
model to our small cropped MIDAS dataset in order to eval-
uate if this transfer learning would result in improved per-
formance. In order to allow our model to adapt to new
data yet not overfit, we constructed a two stage training
strategy. Our first stage was to freeze the backbone and
train the model without weight decay penalties. We used a
learning rate of 1e-4 and trained the model for two epochs.
In the second stage, we unfroze the backbone and intro-
duced dropout with probability 0.5 and weight decay with
penalty 1e-5. We lowered the learning rate to 1e-5 and em-
ployed a learning rate scheduler to help the optimizer nav-
igate smoother regions of the loss landscape. We hypothe-
size that stage one of the training regimen allows the model
to learn and adapt to the new data, while stage two allows
for fine-tuning without overfitting.

6. Results
The results of our experiments, presented in Table 2,

demonstrate that transfer learning from the ISIC dataset
to the cropped MIDAS dataset yields significant perfor-
mance improvements compared to training on the raw MI-
DAS images alone. Notably, the recall—a critical metric
for melanoma classification—increased substantially from
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0.2857 to 0.8571. This improvement indicates that the
transfer-learned model is more effective at correctly iden-
tifying malignant cases. Our results further show high
performance on the ISIC dataset showing performance is
comparable to dermoscope-trained models when the images
are not captured using smartphones. In the following ta-
bles, Unc. represents ”uncropped” and Crop. represents
”cropped.”

Model Accuracy Precision Recall ROC-AUC
Midas Unc. (ConvNeXt) 0.6667 0.6000 0.5769 0.7040
Midas Unc. (ResNet) 0.6667 0.6429 0.4500 0.6625
Midas Unc. (EffNet-B0) 0.3750 0.3333 0.2500 0.4102
Midas Cropped (Final) 0.7363 0.6154 0.8823 0.8823
ISIC (Final) 0.9651 0.9293 0.9884 0.9941

Table 1. Validation results across models and datasets.

We report test set performance (Table 2) only for the final
selected models, as these consistently outperformed earlier
architectures on the validation set (Table 1). This evalu-
ation strategy ensures that only the most promising mod-
els—based on validation accuracy and recall—are assessed
on held-out test data, thereby reducing the risk of overfitting
and preserving the integrity of the test set.

Model Accuracy Precision Recall ROC-AUC
Midas Unc. (Final) 0.5714 0.4667 0.2857 0.5840
Midas Crop. (Final) 0.7000 0.5769 0.8571 0.7927
ISIC (Final) 0.9916 0.8571 0.9364 0.9676

Table 2. Test performance of final models across datasets.

Across all models, early results indicated overfitting
(achieving zero loss on the training data but poor general-
ization to the validation data), which motivated fine-tuning
the weight decay, dropout, and data augmentation tech-
niques described earlier.

Despite very strong performance on ISIC images, adapt-
ing our ISIC-trained model to perform well on the cropped
MIDAS images was challenging, primarily because our
model was actually underfitting to the new data. We ob-
served that removing regularization techniques (weight de-
cay and dropout) improved performance at first, but then
led to overfitting. As a result, we tested a variety of training
regimens that varied freezing vs unfreezing the backbone
(which had now been pretrained on ISIC images), learn-
ing rates, and regularization. In the end, we were able to
come to a two-stage training strategy described previously
that mitigated the problem of underfitting appropriately.

Overall, our best model achieved recall of 0.8571 and
ROC-AUC 0.7927. Figure 8 shows the confusion matrix re-
sults from our best model (determined via validation perfor-
mance) evaluated on our dataset of cropped MIDAS smart-
phone camera images, and Figure 9 shows the ROC-AUC
curve.

As indicated by the confusion matrix, because we opti-
mized for recall, our model has high recall (true positive

Figure 8. Confusion matrix results on the cropped MIDAS images
test set.

Figure 9. ROC-AUC curve for the cropped MIDAS images test
set.

rate) at the cost of false positive rate. Figure 10 shows
two examples of correctly predicted skin lesions and two
examples of incorrectly predicted lesions, with more pre-
dictions shown in Figure 13. Though we sought to identify
trends that could explain incorrect examples, we were un-
able to identify any meaningful patterns across incorrectly
predicted images.

Further results for the ISIC model, including the confu-
sion matrix, ROC-AUC curve, and sample image predic-
tions can be found in the appendix.

7. Discussion
Overall, we observed that a ConvNeXt-based classi-

fier trained on high-quality clinical images from the ISIC
archive was able to improve performance compared to base-
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Figure 10. Images demonstrating correctly predicted and incor-
rectly predicted skin lesions

line when fine-tuned on the MIDAS dataset, which consists
of more variable and lower-resolution iPhone images. Cru-
cially, this performance was achieved while also manually
cropping in so that the smartphone imaged matched the rel-
ative size of the ISIC images.

This supports the idea that models initially trained on
higher-quality clinical images (e.g., from ISIC) can be ef-
fectively fine-tuned for deployment on more practical, real-
world data sources like smartphone images. Our PCA anal-
ysis of the raw and encoded image embeddings further con-
firms that the domains overlap significantly, suggesting that
the distribution shift is manageable with appropriate trans-
fer learning strategies.

The fine-tuned MIDAS model attained promising results
with an ROC-AUC of 0.79 and recall of 0.86, demonstrat-
ing clinical relevance for early detection. This methodology
emphasizes the potential for at-home risk assessment, low-
ering barriers to early screening and empowering patients in
under-resourced or remote settings.

However, our work is not without limitations. The
cropped MIDAS dataset remains relatively small and non-
standardized, with many images in the dataset taken in poor
lighting conditions from a variety of angles. Further valida-
tion on diverse smartphone image collections is necessary
to ensure broader generalizability.

Additionally, our ISIC-trained model outperforms the
fine-tuned counterpart and achieves performance compara-
ble to state-of-the-art models trained on dermoscopic im-

ages—surpassing the average diagnostic performance of
dermatologists as reported in prior studies. This suggests
that, with appropriate architectures, high-resolution clini-
cal photographs can capture clinically meaningful features
comparable to those seen in dermoscopic imaging. These
results also point to the potential for achieving better perfor-
mance on high-definition images captured via smartphone
cameras, provided they are taken under standardized condi-
tions (e.g., consistent distance and lighting with flash). This
underscores the need for further evaluation and validation
on real-world smartphone image datasets to better under-
stand their clinical utility in early detection settings

8. Conclusion
Our results demonstrate the feasibility of using transfer

learning to adapt high-performing skin lesion classification
models to smartphone-captured clinical images. While ex-
isting models often rely on dermoscopic images taken in
controlled clinical environments, our work achieves robust
performance on images taken on smartphone cameras.

Future work should focus on image preprocessing tech-
niques, such as applying lesion localizing and segmenta-
tion algorithms on clinical images to remove background
objects, artifacts, and noise. A robust algorithm to seman-
tically segment the skin lesion would significantly boost
the model’s ability to predict images with poor quality and
thereby unlock the potential for it to be applied in day-to-
day clinical uses and help millions of patients. Additionally,
to evaluate performance on clinical datasets, future efforts
should obtain performance metrics (accuracy, precision, re-
call, ROC-AUC) of human physicians’ predictions on the
test set. These metrics would contextualize the confidence
of the model predictions and alleviate concerns of overfit-
ting. In terms of architecture, ViT-based models are also
worth exploring, as we believe the significant success they
have exhibited with dermoscopic datasets can be transferred
to clinical datasets.
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B. Additional Figures

Figure 11. ROC-AUC curve for ISIC images test set.

Figure 12. Confusion matrix results on ISIC images test set.
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Figure 13. Examples of images from the Midas test set along with the model’s prediction for each image.

10



Figure 14. Examples of images from the ISIC test set along with the model’s prediction for each image.
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