Exploring Lora Merging Techniques in Virtual Try-On

Joseph McCoy
Stanford University
jmccoy03@stanford.edu

Abstract

With the rising interest in high-quality and customiz-
able text-to-image generation, it’s apparent that existing
models encounter challenges—particularly due to token
constraints that make restrict our ability to create hyper-
specific prompts. This makes it difficult to to control fine
details in image generation, which is essential for achiev-
ing the desired visual outputs. Here, we dive into exploring
Low-Rank Adaptation (LoRA) merging techniques, using
the SDXL latent diffusion model as our foundation. To ef-
fectively streamline the merging process and tailor it to our
specific needs, we curated our own datasets. This approach
allowed us to control critical parameters during training
and explore the applicability of fine-tuning and merging
techniques in real-world scenarios. After gathering these
self-curated datasets, we trained multiple LoRA modules
specifically designed for this purpose. We then employed
various merging strategies as detailed in our methods sec-
tion, which included common techniques like weighted av-
erages and more advanced approaches such as ZipLoRA.
Following the merging process, we evaluated the perfor-
mance of the models using a series of different prompts to
assess their ability to generate diverse and creative images.
We calculated the similarity of the generated outputs to the
original parent datasets, offering insight into how well the
merged models preserved the unique characteristics of the
individual LoRAs. Our findings show that the Mixed L2
Norm Weighted Average Merge technique had the highest
similarity scores among the tested methods, doing a bet-
ter job preserving the characteristics of each LoRA. In con-
trast, the other merging techniques exhibited more interfer-
ence, which manifested in lower similarity scores. Moving
forward, we plan to refine our algorithms and explore ad-
ditional strategies, such as ZipLoRA, to further enhance the
performance of text-to-image generation models.

1. Introduction

As deep learning models grow in complexity, there is in-
creasing demand for more realistic and customizable text-

Songqi Pu
Stanford University

songgipu@stanford.edu

to-image generation technologies. SDXL, a 2.6 billion pa-
rameter latent diffusion model, represents the current state-
of-the-art in this space [1]. While SDXL is capable of gen-
erating high-quality images that reflect the user’s prompt, it
is constrained by the 77-token limit imposed by CLIP [2].
The initial tokens are weighted more heavily, and any to-
kens beyond the limit are processed in a separate chunk,
potentially diminishing their influence. As a result, precise
image generation depends heavily on prompt engineering,
requiring users to concisely capture both broad concepts
and fine details.

To reduce this dependence on highly engineered
prompts, researchers have developed Low-Rank Adapta-
tion (LoRA), which fine-tunes key cross-attention lay-
ers—where prompts and image features interact. LoRA has
achieved results comparable to full model fine-tuning, while
being more efficient in terms of time and computational re-
sources [3]. These modules are lightweight, requiring only
10-20 images to train, and are typically task-specific, im-
proving model performance for particular classes of im-
ages. This makes LoRA a powerful tool for adapting pre-
trained diffusion models without the need for costly retrain-
ing. Though LoRA has proven highly effective for task-
specific fine-tuning, the broader question of how to combine
multiple LoRA modules remains an open area of research.
Early efforts have revealed challenges such as parameter
interference and inconsistent performance, prompting new
approaches to more effectively integrate LoRA modules.

Developing more flexible and modular approaches to
LoRA merging could expand the capabilities of models
like SDXL, enabling more expressive and customizable im-
age generation without the need for extensive retraining.
Here, we explore how existing LoRA merging strategies
perform when applied to modules trained on our own cu-
rated datasets, while also experimenting with tweaks and
adaptations to improve compositional control and reduce
interference during image generation. Our inputs are the
images we curate for our LoRA modules and the merging
methodologies, and our outputs are the SDXL images gen-
erated with the LoRA modules applied. Our results show
that while some merging techniques do a good job of keep-

ing the unique traits of individual LoRAs, there are still
challenges with interference that need to be addressed for
better performance. Overall, these findings will help us
improve methods that can boost the performance and cus-
tomizability of text-to-image generation technologies.

2. Related Work
2.1. Fine-Tuning Diffusion Models

In the growing field of text-to-image generation, there is
also a growing desire for image stylization based on the tex-
tual inputs. Existing techniques include Textual Inversion
which learn text embeddings [4]; DreamBooth fine-tuning
which adjusts the weights of the entire model [5], Low
Rank Adaptations (LoRAs) [6], Custom Diffusion, which
attempts to learn multiple concepts through expensive joint
training from scratch [7] in addition to many other methods.

2.2. Parameter Efficient Fine-Tuning (PEFT)

In order to reduce the amount of storage and compute
required to fine-tune stable diffusion models or LLMs, work
has been done to limit the number of parameters that need
retraining. One type of PEFT, the Low-Rank Adaptation
(LoRA) is the state-of-the-art in this field [6]. Instead of
fine-tuning the entire model, a LoRA aims to fine-tune the
“residual” of it (by training AW).

W' =W+ AW (1)

We can decompose the update matrix AW into low rank
matrices such that AW = ABT where A € R*"*4 B ¢
R™*4 and d << n. By fine-tuning A and B instead of W,
our adjustment module becomes extremely small, which is
helpful for memory storage and compute [8].

2.3. LCM-LoRA

Luo et al. proposed LCM-LoRA, an acceleration mod-
ule for stable diffusion models. They train a Latent Con-
sistency Model (LCM) using a one-stage guided distilla-
tion method and solve an augmented Probability Flow ODE
(PF-ODE). They then distill this LCM to get the parameters
for a LoORA module. The result is quality image generation
that requires fewer sampling steps and reduced memory. In
addition to the performance benefits, they demonstrate the
merging of this LCM-LoRA with a specific style LoORA us-
ing a weighted linear combination of LoRA weights. They
show that this approach could significantly enhance SDXL
performance [9]. This study did great work at using a LoRA
to speed up inference with the model, but it didn’t really in-
novate when it came to using multiple LoRAs.

2.4. Mixure of LoRA Experts (MoLE)

Wu et al. sought to overcome the interference that
comes with a (normalized) linear combination and the ex-

pensive nature of the reference tuning approach with man-
ually crafted mask information. They developed the MoLE
which incorporates a gating function for multiple LoRAs
that learns the optimal composition weights based on a spe-
cific objective. This helps enhance the desirable character-
istics while lessening the unfavorable ones. They found that
this method outperforms their other benchmarks [10]. This
method has only really been tested in the NLP domain and
seems to work well for multiple LoORA modules. However,
it does require training the gating function which could be
expensive.

2.5. ZipLoRA

Shah et al. developed ZipLoRA, a method to cheaply and
effectively merge independently trained style and subject
LoRAs. They made 2 important observations when devel-
oping this idea. First, most LoRA weights are sparse, and
have little effect on image generation. Second, The columns
of the weight matrices of two independently trained LoRAs
have different levels of alignment (cosine similarity), and
summing highly aligned columns degrades performance of
the merged model. Thus, they aimed at reducing this align-
ment interference while preserving the distinct functional-
ity of each module, which they optimized for in the loss
function. Their results showed that ZipLoRA outperformed
earlier merging strategies [1 1]. This work made significant
progress on the merging pipeline for a single subject and
style LoRA, but has not extended to merging multiple sub-
jects.

2.6. CLoRA

Building on these efforts, Han Salih Meral et al. intro-
duced CLoRA, a method that, using contrastive learning,
avoids merging weights altogether. Instead, CLoRA ad-
justs attention maps at inference time to spatially direct each
LoRA’s contribution to specific subjects or regions in the
image. This selective activation enables greater composi-
tional control and was shown to outperform both ZipLoRA
and conventional merging techniques [12]. This work is
probably the strongest candidate for LORA merging thus far,
but we were not able to access the codebase for this project.

3. Dataset and Features

For our project, we are working with a few self-curated
datasets of 10-15 images each. Each image was self-
labeled. We have collected the following sets:

Profile

FC Barcelona jersey
White shirt
Stanford sweater
Disney sweater

NS

The barca and the white shirt datasets were collected from
publically available images from the internet, and the others
were collected by taking the images ourselves around cam-
pus. Figure 1 shows the shirt datasets and Figure 2 shows
the profile dataset.

Figure 1: The images included in the datasets of different
shirts that we curated. We have FC Barcelona jerseys (top),
white shirts (second from top), Disney sweaters (3rd from
top), and Stanford sweaters (bottom).

. ! r [& 7 M:Z 7 L)

Figure 2: The images comprising our profile dataset that we
curated.

We will use these datasets to train the LoRA modules
that we will eventually merge.

4. Methods
4.1. Model Selection

For this project we will be working with a pretrained
SDXL model (stabilityai/stable-diffusion-xI-base -1.0”), a
2.6 billion parameter latent diffusion model which we will
fine-tune with our LoORA modules. We chose this model be-
cause, while it is no longer the best stable diffusion model
out there, it was cutting edge when it was released. More-
over, it’s frequent use has led to a streamlined interface in
Huggingface as well as ample research into fine-tuning it
for specialized image generation.

4.2. LoRA Training

In order to control the parameters of our LoORA modules,
like the rank, number of images, and the number of epochs,
we trained our own using the train_text_to_image_sdxl.py
script from the Huggingface stable diffusion library [8].
The parameters we used are:

pretrained_model_name_or_path="stabilityai/stable-
diffusion-xl-base-1.0”

— resolution=512 —random_flip
— train_batch_size=1

— max_train_steps 400

— rank 8

— num_validation_images 0

— num_train_epocs=1

— checkpointing_steps=100

— learning_rate=1e — 04

— Ir_scheduler="constant”

— Ir_warmup_steps=0

— seed=42

The trained LoRA modules were then uploaded to Hugging-
face for easy use with SDXL.

Using this pipeline, we trained 4 LoRA modules for our
project. The first two were pure, only using the dataset we
curated for them. The next two were trained on a mixed
dataset, containing the original images plus three from the
opposite dataset.

4.3. LoRA Merging
4.3.1 Weighted Average

The weighted average, as shown in Figure 3, is one of the
more common approaches for merging LoRA modules.

It involves taking the weighted average of the LoRA
weights according to Eq.2,

N
AW = " w; - AW,)
=1

where AW are the parameters of the merged LoRA, AW;
are the parameters of each individual LoRA, and w; are the

wi w3 Wy
LoRA f3 LoRAy

Figure 3: Weighted average, which commonly applies the
same composition weight IW; to all layers of the ith LoRA
[10].

composing weights for each LoRA such that Z qw; =1
It is common practice to weight the LoRA contributions
as such to preserve the model’s general capabilities, but it
should be observed that a LoRA will begin to lose it’s indi-
vidual characteristics as the composing weight is reduced.

We wrote a script for this operation, and for our experi-
ments we use N = 2 and w; = .5 forall i < V.

4.3.2 L2 Norm-based Weighted Average

The L2 norm-based weighting average is the same as the
method in the previous section with one key difference:
we weight each set of parameters proportionally by the L2
norm. The result s a slightly different value for the compos-
ing weights, as seen in Eq 3. This has the effect of making
the LoRAs with a larger magnitude contribute more heavily
to the merged result.

AW;
w = ol 3)
2 k=1 [[AWi]]2

We wrote a script for this operation, and for our experiments
we alsouse N = 2.

4.3.3 ZipLoRA

This method works by learning the composing weights for
each column of AW; for both LoRas. it does this by (1)
minimizing the difference between the images generated
with the merged LoRA and the those from the original
LoRA models and (2) minimizing the cosine similarity be-
tween the columns of the two LoRA modules. See Figure 4
for a pictorial overview. The goal of this objective is to con-
serve the properties of each LoRA while minimizing signal
interference [11].

g@ ﬁ gl L Dt
m%@ﬁ sl M !

Figure 4: Overview of ZipLoRA [11]

In order to complete this operation for our project, we
utilized an implementation of the algorithm that was writ-
ten by user mkshing [13]. While being a great starting
place, this implementation is a bit depreciated, so we’ve
been working to make it functional with current libraries.

4.4. Evaluation

For evaluation, we compare the outputs of the base
model (without fine-tuning) and the pure LoRA fine-tuned
model against the outputs from each of the four merged
LoRA fine-tuned models. We will generate images for 5
different conditions using each LoRA. The prompts are:

1. ”A portrait of a psq-person smiling at the camera,
wearing a barca24_jersey.”

2. ”A portrait of a psq-person smiling at the camera,
wearing a barca24_jersey and facing to the side.”

3. A portrait of a psq-person smiling in a selfie, wearing
a barca24 _jersey with Nike shoes.”

4. ”A portrait of a psq_person smiling at the camera,
wearing a barca24 jersey and standing in front of a
wall.”

5. ”A portrait of a psq-person smiling at the camera,
wearing a barca24 _jersey and holding a soccer ball on
a field.”

Using the images we generate with these prompts, we will
calculate DINO similarity scores using Facebook’s DINO-
v2. To properly evaluate our LoRA’s performance, we will
first compute the average DINO embedding for the images
in our datasets. Then we will embed each image using
DINO-v2 and calculate the cosine similarity between the
output image and both of the average dataset embeddings.
Finally we will compute an average score for each LoRA
module.

5. Results
5.1. LoRA Training

Using the 5 datasets we curated above, we successfully
created a LoRA module for each of them. The profile and
the barca LoRAs worked pretty well (see Figure 8.), but the
LoRAs for the white shirt, the disney shirt, and the Stan-
ford shirt did not produce a high quality result, as shown in
Figure 5.

We hypothesized that this was because the images in
those datasets had too much variablity, which made the
LoRA module harder to train using our pipeline. As aresult,
we only continued on with the Profile and Barca LoRAs,
which are accessible below:

1. profile [link]
2. barca [link]
3. profile_mixed [link]
4. barca_mixed [link]

Figure 5: Images of the Failed LoRAs, white shirt, Disney
sweater, and Stanford sweater.

5.2. LoRA Merging

Subsequently, we merged the Profile and the Barca Lo-
RAs according to the methods we outlined in Section 4.3.
We obtained the following merged LoRA modules:

1. Weighted Average [link]

2. L2 Norm Weighted Average [link]

3. Mixed Weighted Average [link]

4. Mixed L2 Norm Weighted Average [link]

5.3. Image Generation

With these LoRA modules we have trained and merged,
it was time to use them for image generation. Our collection
resulted in the following 7 settings we’ve used:

SDXL with no LoRA fine-tuning

SDXL with Barca fine-tuning

SDXL with Profile fine-tuning

SDXL with merged LoRA via Weighted Avg fine-

tuning

5. SDXL with merged LoRA via L2 Norm Weighted Avg
fine-tuning

6. SDXL with merged LoRA with data swap via
Weighted Avg fine-tuing

7. SDXL with merged LoRA with data swap via L2

Norm Weighted Avg fine-tuning

Hwh e

For each of these settings, we ran the model on 5 different
prompts, which are shown in Figure 8, (refer to section 4.4
for the prompts). Qualitatively, we decided that the mixed
dataset LoRAs had the best images.

5.4. Evaluation

After collecting all of the images, we computed aver-
age similarity scores for each LoORA module using DINO-
v2 embeddings from the generated images and the source
datasets (see Section 4.4 for more detail). This means that
we have two output numbers for each LoRA module that
indicates its performance.

See Figure 6 for the exact metrics. We see that the mixed
dataset L2 norm weighted average LoRA has the highest
similarity of all the ones we merged.

Profile Avg Similarity Barca Avg Similarity

None 0.5334 0.6445

Profile 0.6823 0.6293

Barca 0.4036 0.7599

‘Weighted Avg 0.5703 0.7168

L2 Norm Weighted 0.5986 0.6840
Avg

Mixed Weighted Avg 0.6053 0.7087

Mixed L2 Norm 0.6154 0.7179
‘Weighted Avg

Figure 6: Table of our average similarity scores compared
to each dataset for each LoRA

5.5. Data Visualization

To help us analyze our results better, we plotted the dif-
ferent similarity metrics on a few graphs. In Figure 7 we
have the similarity scores for the images generated from
each LoRA against the average embedding from the Profile
dataset. We see that the LoRA trained only on the profiles
performed the best, with all of the merged LoRAs having
a lower similarity score. Among the merged LoRAs, the
Mixed Norm-based weighted average had the best similar-

1ty.

Similarity vs Profile

0.6

Similarity Score
o o
P

e
w

o
N

0.1

o ?(oﬁ\\a %@«f‘ "\e@e \,\eﬁe \,\@Qe . \I\e@e

Figure 7: DINO similarity vs. Profile

https://huggingface.co/psq-qsp/profile_lora1
https://huggingface.co/psq-qsp/barca_lora1
https://huggingface.co/psq-qsp/profile_mixed_lora
https://huggingface.co/psq-qsp/barca_mixed_lora
https://huggingface.co/psq-qsp/vannilla_merge
https://huggingface.co/psq-qsp/normalized_merge
https://huggingface.co/psq-qsp/mixed_vanilla_merge
https://huggingface.co/psq-qsp/mixed_normalized_merge

Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5

None

Profile

Barca

Weighted Average

deating

L2 Norm Weighted
Average

Mixed Weighted

Average ' saitotg

otd,

Mixed L2 Norm
Weighted Average

Figure 8: Images generated with each of our 5 prompts and each of our 7 model configurations.

In Figure 9 we have the similarity scores for the im-
ages generated from each LoRA against the average em-
bedding from the Barca dataset. From these metrics, the
Barca LoRA has the highest similarity, but the merged Lo-
RAs performed pretty well; the decrease is less significant
than with the Profile similarities. Out of the merged LoRAs,
the normal weighted average and the mixed dataset L2 norm
weighted average had the same average similarity.

Similarity vs Barca

Similarity Score
o o o
VIS

o
s

o
o

o o e

Figure 9: DINO similarity vs. Barca

In Figure 10 We have the DINO similarity scores for
each LoRA module with each dataset separated by the
prompt (or the image name). This shows us that the prompt
we use also seems to have an impact on the similarity
scores. Prompt 3 seemed to generate a pretty equal score
for both sets, but the others all seemed to slightly favor the
Barca set.

Similarity Scores by Prompt and Metric

1.0
Metric
mmm Profile

Bmm Barca
0.8

4
o

Similarity Score
I
=

0.2

0.0

Figure 10: DINO similarity by Prompt

In figure 11 we have the average similarity score for each
LoRA module, split by the dataset it was compared to. We
see that aside from the Profile LoRA, every other module,
including SDXL without any fine-tuning had higher simi-
larity to the Barca dataset. This makes sense, as it results

from the difficulty of recreating a specific face and the ease
of recreating patterns on a shirt.

Average Similarity Scores by Model

Average Similarity
o
~

B Similarity vs Barca
mmm Similarity vs Profile

Figure 11: Average DINO similarity by model

5.6. Missing ZipL.oRA

In our methods section, we detailed ZipLLoRA as a tech-
nique for merging two LoRAs together. As we mentioned
earlier, the codebase we were working with was a bit de-
preciated. We were unfortunately unable to run the merging
algorithm, which explains the lack of a ZipLoRA example
above. More specifically, we found out that there were a
couple of big refactoring from key libraries including hug-
gingface and diffusers that the ZipLora implementation re-
lies on. These libraries had initial incompressibilities we
had to resove. After resolving them, we were able to kick
off the training loop, however, we then found out that the
way ZipLora is implemented is not compatible with the Lo-
RAs we’ve trained using the latest libraries due to the mis-
match in the naming schemes of keys. We regret that there
was not enough time to explore this further.

6. Discussion

In this work, we explored different ways of merging Lo-
RAs trained on self curated datasets and observed the im-
pacts of the different techniques on model performance.
Our primary evaluation metric was similarity, which we ob-
tained through the DINO-v2 embeddings for the images.
We computed the cosine similarity scores between the gen-
erated images and their corresponding dataset averages for
two target groups: the Barca dataset and the profile dataset.
The higher these scores, the more similar the generated im-
ages are to the training images, and this would represent an
improved ability to retain the characteristics of the training
dataset when generating new images.

Quantitatively, we are able to see that each of the indi-
vidual LoRAs has a higher similarity to our targets than that
of the plain stable diffusion. In addition, across all of our

merged LoRAs, the similarity scores are generally higher
than that of the plain stable diffusion as well. However,
their individual categorical result is lower than that of the
individual Profile and Barca LoRAs, as expected. Within
the merged LoRAs, the Mixed Normalized Merge performs
the best.

Qualitatively, we’re able to see clearly that the Profile
and Barca LoRAs each learned the concepts of the face and
jersey. In Profile LoRA, we can see that the features of
the face is learned really well. In the Barca LoRA, we can
see that the overall contours of the jersey is learned well
although the letters and the details of the jersey still is not
perfect. However, we can still easily see a substantial dif-
ference between the results from these 2 LoRAs against the
plain stable diffusion.

Across all of our merged LoRAs, we’re able to see that
although the Barca jersey has maintained it’s overall shape
and colors, the facial features from the Profile LoRA is gen-
erally not as well preserved. Out of all the merged LoRAs,
the facial features are preserved best in the Mixed L2 Norm
Weighted Average LoRA. This is also indicated through the
Dino score as mentioned above.

We regret that we were not able to fully replicate Zi-
pLoRA’s functionality due to the nested incompatibility of
packages and LoRA standards from late 2023 to now. How-
ever, we also learned a valuable lesson that in future work,
we should be careful to have the versions of software and
libraries explicitly written out, since this is a fast moving in-
dustry, and even the most popular libraries may have refac-
tored code or drastic changes on a monthly basis.

7. Conclusion

Here, we explored the nuances of building your own
small image datasets, training LoRA modules on those
datasets, and trying different ways of merging them to al-
low for more complex fine-tuning of a popular stable diffu-
sion model SDXL. We found that all of our merged datasets
experience some amount of interference that reduced the
performance of the model. Out of our techniques, the L2
norm-based weighted average exhibited the best similarity
to the training sets, though still performed worse than the
pure LoRAs themselves. This indicates that simply aver-
aging the LoRA parameters together could be a bit naive,
and potential demands something with a bit more compute.
If we had more time and more compute we would pursue
some of these more complete methodologies, like ZipLoRA
(if we could get it to work) and CLoRA, which innovatively
leverages contrastive learning to merge the LoORA modules
together. In addition, it could be interesting to explore how
merging more than to LoRAs impacts the dynamics of this
performance. Overall, though our work helps understand
this problem fairly well, there is much work to be done in
the realm of parameter efficient fine-tuning of stable diffu-

sion models, especially since the technologies are rapidly
evolving.

8. Contributions and Acknowledgments

For this we utilized the following codebases:
1. Huggingface
2. mkshing/ziplora
3. pytorch
4. Facebook’s DINO-v2

Songqi’s contributions: Collected and labeled datasets,
Implemented the training of LoRAs, Implemented the
merging techniques of the LoRAs. Worked on getting the
ZipLoRA to work. Ran DINO evaluations. Did parts of the
writing (Section 6).

Joey’s contributions: Collected and labeled datasets,
Worked with trying to make the ZipLoRA implementation
functional, Did most of the report writing (Abstract through
Results and then Conclusion). Processed the DINO data
into graphs and made/sourced the figures.

References

[1] D. Podell, Z. English, K. Lacey, A. Blattmann,
T. Dockhorn, J. Miiller, J. Penna, and R. Rom-
bach, “Sdxl: Improving latent diffusion mod-
els for high-resolution image synthesis,” https:/
arxiv.org/abs/2307.01952, Jul. 2023, arXiv preprint
arXiv:2307.01952. 1

[2] S. Mukherjee, “Decoding long-clip: Under-
stand the power of zero-shot classification,”
https://www.digitalocean.com/community/tutorials/
long-clip-zero-shot-classification-text-analysis, Dec.
2024, digitalOcean. 1

[3] L. Tsaban, “Lora
world, unite!”
sdxl_lora_advanced_script, Jan. 2024,
Face. 1

[4] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H.
Bermano, G. Chechik, and D. Cohen-Or, “An im-
age is worth one word: Personalizing text-to-
image generation using textual inversion,” https:/
arxiv.org/abs/2208.01618, Aug. 2022, arXiv preprint
arXiv:2208.01618. 2

[5] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubin-
stein, and K. Aberman, “Dreambooth: Fine tuning
text-to-image diffusion models for subject-driven gen-
eration,” https://arxiv.org/abs/2208.12242, Mar. 2023,
arXiv preprint arXiv:2208.12242. 2

training scripts of the
https://huggingface.co/blog/
hugging

[6] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li,
S. Wang, L. Wang, and W. Chen, “Lora: Low-
rank adaptation of large language models,” https://

https://github.com/huggingface/diffusers
https://github.com/mkshing/ziplora-pytorch/blob/main/requirements.txt
https://pytorch.org/
https://huggingface.co/facebook/dinov2-large
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2307.01952
https://www.digitalocean.com/community/tutorials/long-clip-zero-shot-classification-text-analysis
https://www.digitalocean.com/community/tutorials/long-clip-zero-shot-classification-text-analysis
https://huggingface.co/blog/sdxl_lora_advanced_script
https://huggingface.co/blog/sdxl_lora_advanced_script
https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/2208.12242
https://openreview.net/forum?id=nZeVKeeFYf9

(7]

(8]

(9]

(10]

(11]

[12]

(13]

openreview.net/forum?id=nZeVKeeFYf9, Oct. 2021,
openReview. 2

N. Kumari, B. Zhang, R. Zhang, E. Shechtman,
and J.-Y. Zhu, “Multi-concept customization of text-
to-image diffusion,” https://arxiv.org/abs/2212.04488,
Jun. 2023, arXiv preprint arXiv:2212.04488. 2

Cloneofsimo, “Cloneofsimo/lora: Using low-rank
adaptation to quickly fine-tune diffusion models,”
https://github.com/cloneofsimo/lora, 2024, gitHub. 2,
3

S. Luo, Y. Tan, S. Patil, D. Gu, P. von Platen, A. Pas-
sos, L. Huang, J. Li, and H. Zhao, “Lcm-lora: A
universal stable-diffusion acceleration module,” https:
/larxiv.org/abs/2311.05556, Nov. 2023, arXiv preprint
arXiv:2311.05556. 2

X. Wu, S. Huang, and F. Wei, “Mixture of
lora experts,” https://openreview.net/forum?id=
uWVvKBCYh4S, Oct. 2023, openReview. 2, 4

V. Shah, N. Ruiz, F. Cole, E. Lu, S. Lazebnik, Y. Li,
and V. Jampani, ‘Ziplora: Any subject in any style
by effectively merging loras,” in Computer Vision —
ECCV 2024. Springer Nature Switzerland, 2024,
springerLink. 2, 4

T. H. S. Meral, E. Simsar, F. Tombari, and P. Yanardag,
“Clora: A contrastive approach to compose multiple
lora models,” https://arxiv.org/abs/2403.19776, Mar.
2024, arXiv preprint arXiv:2403.19776. 2

Mkshing, “mkshing/ziplora-pytorch: Implementation
of “ziplora: Any subject in any style by effec-
tively merging loras”,” https://github.com/mkshing/
ziplora-pytorch/tree/main, 2023, gitHub. 4

https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2212.04488
https://github.com/cloneofsimo/lora
https://arxiv.org/abs/2311.05556
https://arxiv.org/abs/2311.05556
https://openreview.net/forum?id=uWvKBCYh4S
https://openreview.net/forum?id=uWvKBCYh4S
https://arxiv.org/abs/2403.19776
https://github.com/mkshing/ziplora-pytorch/tree/main
https://github.com/mkshing/ziplora-pytorch/tree/main

