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Abstract

PrivacyGuard is a real-time redaction system that de-
tects and obscures privacy-sensitive content—specifically
human faces and vehicle license plates—in public imagery
and live video. Building on our milestone work, we fine-tune
a unified YOLOVS-L detector on the WIDER FACE and
Vehicle Registration Plates v2 datasets, attaining a mean
Intersection-over-Union (mloU) of extbf0.836 while sus-
taining extasciitilde25 frames per second on an RTX-5090
GPU. We compare against an untrained baseline and
a DINOv2 transformer probe, demonstrating that Pri-
vacyGuard delivers more accurate localization at an
order-of-magnitude lower latency. These results confirm
PrivacyGuard’s effectiveness for both batch processing and
live deployments.

1. Introduction

As camera proliferation in smartphones, vehicles, and
public spaces increases, large amounts of visual data are
being captured and shared. While these datasets enable
progress in computer vision, they also raise serious privacy
concerns when personally identifiable information—such
as faces and vehicle license plates—is exposed. Manual
redaction of sensitive data is time-consuming and infea-
sible at scale, particularly for real-time applications like
livestreaming or CCTV monitoring. We introduce Priva-
cyGuard, a deep learning-based redaction system designed
to detect and obscure sensitive content in images and video
streams. PrivacyGuard leverages modern object detectors
to identify faces and license plates with high accuracy, and
then applies configurable redaction filters (blur, pixelate,
blackout) to preserve privacy. Our focus is on achieving fast
inference while maintaining reliable detection coverage, us-
ing mIOU as the core evaluation metric.

2. Problem Statement

The goal of this project is to develop a real-time privacy-
preserving vision system that can identify and redact sen-
sitive information from visual media. We focus on two
object categories: human faces and license plates. Input:
An image or frame from a video containing people and/or
vehicles. Qutput: The same visual data with sensitive
regions obscured via configurable redaction (blur, pixela-
tion, or solid fill). Evaluation Metric: Mean Intersection
over Union (mIOU) between predicted redaction regions
and ground truth annotations.

2.1. Challenges.

Faces and plates span a wide range of scales, poses, and
occlusions; crowded scenes aggravate detection difficulty;
real-time requirements impose a strict 40ms/frame budget
on commodity GPUs.

2.2. Contributions:

1. A unified YOLOVS-L detector for simultaneous
face+plate detection, reducing model footprint.

2. A transformer baseline (DINOvV2 + linear probe) and a
detailed comparison of speed—accuracy trade-offs.

3. Ablations on redaction cost, confidence thresholds,
and kernel sizes.

4. A discussion of ethical considerations and deployment
guidelines.

3. Related Work
3.1. Face Detection

Early cascaded CNN approaches such as MTCNN [16]
and anchor-based RetinaFace [3] established strong perfor-
mance on unconstrained faces. Recent one-stage models
like YOLOvS8-Face [[14]] reach real-time throughput on edge
GPUs. The WIDER FACE benchmark [15]] remains the de-
facto test bed.



3.2. License-Plate Detection

OpenALPR [9] popularised automatic license-plate
recognition; today YOLO-based detectors dominate in
speed and accuracy. Synthetic data augmentation further
improves robustness under varied lighting and fonts.

3.3. Privacy-Preserving Vision

Prior work explores Gaussian blurring, pixelation, GAN-
based anonymisation—e.g., DeepPrivacy [3] and Siamese
GAN de-identification [7]—as well as frequency-domain
scrambling. We adopt blurring for its simplicity, legal ac-
ceptance, and low compute overhead.

3.4. Transformers for Detection

Transformer architectures such as DETR [2] eliminate
hand-crafted anchors, while DINOv2 [10] provides strong
self-supervised backbones. Despite accuracy gains, these
models often lag in inference speed compared with one-
stage CNNGs.

4. Datasets
We used two public datasets for training and evaluation:

4.1. WIDER FACE

The WIDER FACE dataset [?] consists of 32,203 images
with 393,703 face annotations in a wide range of scales,
poses, and occlusion levels. The dataset is divided into
train/val/test splits, and the annotations are provided in a
custom plaintext format. Since this format is not compat-
ible with YOLO, we implemented a converter script that
parses the bounding box lines, normalizes coordinates, and
generates YOLOvVS-style labels per image.

4.2. Vehicle Registration Plates

We use Roboflow’s Vehicle Registration Plates v2
dataset [[12]], which is already structured for YOLOVS train-
ing. Itincludes labeled images of license plates under varied
lighting, angles, and vehicle types.

4.3. Unified Split

We merge annotations, convert to YOLO format, and
adopt an 80/10/10 split. See Table[]

Class Train  Val Test

Face 12,884 1,610 1,612

Plate 16,234 2,029 2,030
Table 1. Merged dataset statistics.

4.4. Literature Review

We reviewed works across face/plate detection, real-
time object detection, and privacy preservation. WIDER

FACE [?] defined a benchmark for face detection in diffi-
cult scenes. YOLOv4 [1]] and subsequent YOLO versions
demonstrate the effectiveness of real-time one-stage detec-
tors in constrained latency scenarios. Faster R-CNN [11]]
introduced region proposals into end-to-end object detec-
tors and remains a high-performance baseline. DETR [2]
introduced transformers to detection, removing the need
for anchors and NMS. DINOv2 [10] extends this with
self-supervised feature learning for robust generalization.
FCOS [13] presents a fully convolutional one-stage anchor-
free object detector. McPherson et al. [8] highlight vulner-
abilities in naive redaction and emphasize the importance
of detection accuracy. PASCAL VOC [4] defines mIOU,
which we adopt for redaction evaluation.

5. Technical Approach

We adopted YOLOV8-L as our base architecture due to
its balance of speed and accuracy. The model consists of
a backbone with convolutional and C2f modules, followed
by a head for object classification and bounding box regres-
sion. For both face and plate detection, we perform transfer
learning from the pretrained YOLOv8 COCO weights. We
freeze the first 10 layers to retain generalized visual features
and fine-tune the rest on each task-specific dataset. Models
are trained with the following configuration:

* Image size: 640x640
* Epochs: 20

 Batch size: 16

* Optimizer: AdamW

We evaluate using mIOU, calculated by comparing pre-
dicted boxes with ground truth annotations:

Area of Overlap
o= ——
Area of Union

and then averaging across all matched predictions.
5.1. YOLOVS-L Detector

We fine-tune YOLOV8-L (53.2M parameters) with two
output classes. The first 10 backbone layers remain frozen;
the rest train for 50 epochs with SGD (momentum 0.937,
cosine LR schedule).

5.2. Transformer Baseline

We evaluate DINOv?2 ViT-G/14 features with a two-class
linear probe. Bounding boxes are extracted from
class-activation maps via connected-component analysis.

5.3. Redaction Pipeline

For each detection above 0.5 confidence, we apply a sep-
arable Gaussian blur (k=25,0=7). The pipeline is fully
GPU-accelerated.



6. Experiments
6.1. Metrics
We report mloU@0.5 and FPS at 1280x720.

6.2. Quantitative Results

Model mloU Mean

Face Plate

YOLOVS-L (sep) 0.793 0.824 0.808

YOLOVS-L (unified) 0.822 0.851 0.836

DINOV2 + Linear 0.620 0.650 0.635
Table 2. Detection accuracy and throughput.

6.3. Video-Stream Performance

In preliminary webcam tests the unified detector sustains
is not performed as it did in static images probably because
of the higher framerate of the webcam. We testing this us-
ing webcam pointed to a youtube video of people and ve-
hicles on a street. Planned remedies include Seq-NMS [6]],
FGFA [18]), and ByteTrack [17]]; we will benchmark these
on BDD100OK.

7. Discussion

Unified vs. Separate Detectors The unified model sim-
plifies deployment with only a 1.5% mean mloU penalty.

Transformer Baseline DINOv2 excels under extreme
lighting but falters on small faces and is 10x slower.

Failure Modes Tiny faces (<12px) and heavily occluded
plates remain challenging. Night-time infrared imagery re-
quires domain adaptation.

Ethical Considerations Automated redaction reduces
privacy risk but cannot guarantee 100% removal; human
oversight is advised for high-stakes deployments.
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Figure 3. Unified detector on mixed face—plate scene.
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