Learning Predictive Candlestick Patterns: Vision Transformers for Technical
Analysis
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Figure 1. A OHLC Candle

Abstract

Stock market traders have long used technical analysis of
candlestick charts to predict price movements, but the pre-
dictive value of these charts is contested. In this paper, I ex-
amine different frameworks of training ViTs (classification
for price prediction and self-supervised learning) to see if
transformers are able to learn semantically meaningful pat-
terns. This work demonstrates the efficacy of transformers
in price movement forecasting and the value of candlestick
charts over numerical OHCL data.

1. Introduction

The candlestick chart, first developed by a Japanese rice
trader in the 18th century, have long been used to visually
represent price data for financial assets. Each candlestick
encodes four critical price points—open, high, low, and
close—within a specific time period, creating visual pat-
terns that proponents believe reveal market psychology and
predict future price movements.

Despite widespread adoption, the predictive validity of
candlestick patterns remains highly debated. Efficient mar-
ket hypothesis suggests that all available information is al-
ready reflected in current prices, making technical analy-
sis futile. However, behavioral finance argues that recur-
ring psychological patterns create exploitable inefficiencies.
Previous empirical studies have yielded mixed results, often
limited by subjective pattern definitions and small sample
sizes.

Recent advances in computer vision, particularly Vision
Transformers (Dosovitskiy et al., 2020), offer an unprece-
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dented opportunity to objectively test these claims. Unlike
traditional approaches that rely on hand-crafted rules, deep
learning can discover patterns directly from data, unblem-
ished by human psychology. Furthermore, self-supervised
learning techniques like Masked Autoencoders (He et al.,
2022) enable models to learn meaningful representations
without extensive labeled data.

In this paper,I investigate whether ViTs can learn mean-
ingful patterns from candlestick charts that predict fu-
ture price movements. [ use two different fine-tuning
approaches for ImageNet-pretrained models: (1) multi-
class classification to directly predict price movements and
(2) self-supervised finetuning used masked autoencoders
(MAE), where learned patterns are then clustered and back-
tested. I find that transformers are able to learn effective
representations of the market through candlestick charts,
with my models showing impressive results given their
compute limitations.

2. Literature Review

Existing literature on the application of computer vision
techniques for candlestick charts is limited, partly because
of the general consensus that visual data is noisier and inher-
ently inferior to numerical OHLC data in regards to time-
series forecasting.

1. Chen, 2025: This paper utilizes vision transformers
as a baseline for the task of price forecasting from
candlestick data. It’s useful as it shows the relatively
high accuracy of ViT on this task, especially compared
to CNNs. While the multi-modal LLM used outper-
formed the ViT, this doesn’t account for the massive
disparity in training costs between the two — my pa-
per compares two vision transformers trained with the
same dataset and same number of epochs.

2. Kusuma et al., 2020: This paper used a number of
CNN architectures for the task of price forecasting
from candlestick data. It indicated promising results
and served as a useful point of comparison for my
models.



3. Huang, 2024: This former 231N project explores train-

ing an object-detection model to detect and classify
candlestick patterns on a chart. While the task strongly
differs from my project, the pipeline for the creation of
candlestick charts from numerical data served as inspi-
ration for my own.

As you can see, the existing literature is extremely
sparse — my work is unique in it’s use of vision trans-
formers for interpreting candlestick charts and partic-
ularly the idea of interpreting learned chart representa-
tions via SSL.

3. Dataset

I constructed a dataset of 50,000 224 x 224 candlestick
chart snapshots across 10 different U.S. equities, in-
cluding index-funds, individual stocks, and leveraged
ETFs.

I first collected 5-minute OHLC data using the
Polygon.io API. The data spans January 2020 to
June 2025 and includes only regular market hours
(9:30am—4:00pm). Each snapshot covers 30 5-minute
candles (2.5 hours of trading history). Importantly,
each snapshot is a continguous trading period to al-
low the models to focus on learning intraday patterns.
For the classification task, I additionally included a 3-
class label based on the closing price 25 minutes after
the chart snapshot. If the price was more than 0.5%
it was an "Up” label, if it was more than -0.5% it was
”down”, and otherwise it was labeled “flat”. The class
distribution was roughly 80/10/10 for flat/up/down, but
I left this untouched as it most accurately represented
market conditions.

The images were then generated via mplfinance and
cleaned of axes, grids, and text to focus purely on pat-
terns. All images use green up candles and red down
candles. I used a 70/15/15 Train/Val/Test split.

4. Methods

I formulate candlestick pattern recognition as a multi-
class image classification problem, where given an
input candlestick chart image I € RH*XWx3]
aim to predict the probability distribution over
three classes representing future price movements:
{Down, Flat,Up}. My approach leverages Vision
Transformers (ViTs), which have demonstrated supe-
rior performance in image classification tasks by treat-
ing images as sequences of patches and applying self-
attention mechanisms to capture global dependencies.

4322

4.1 Vision Transformer Architecture

I employ ViT-Tiny (Dosovitskiy et al., 2020) as my
base architecture, which divides each input image into
a grid of non-overlapping patches. Specifically, for an
input image of size 224 x 224 pixels,I use patches of
size P = 16, resulting in N = (H/P) x (W/P) =
196 patches. Each patch z, € R” *3 is flattened and
linearly projected to an embedding dimension d = 192
through a learnable linear projection E € R(” *3)xd.

el 2. N
20 = [Tetass; Tp B3 2, B 52, B 4 Epos

is a learnable classification token
N+1)xd

where  Tcjass
prepended to the sequence, and E,o € R(
represents learnable position embeddings added to re-
tain positional information. The resulting sequence is
then processed through L = 12 transformer encoder
blocks, each consisting of multi-head self-attention
(MSA) and MLP blocks with residual connections and
layer normalization:

Zé = MSA(LN(2¢-1)) + 2z¢—1
2o = MLP(LN(zp)) + 25

The multi-head self-attention mechanism with h = 3
heads enables the model to attend to different posi-
tions simultaneously, learning complex relationships
between different regions of the candlestick chart.

4.2 Training Strategies

Both training approaches leverage transfer learning
by initializing the model with weights pretrained on
ImageNet-1k, which contains 1.2 million natural im-
ages across 1,000 categories. While candlestick charts
differ substantially from natural images, the pretrained
model has already learned fundamental visual features
such as edge detection, shape recognition, and hierar-
chical feature composition.

For my first approach, I simply took the described
transformer architecture and attached a classification
layer. The classification is performed using the trans-
formed classification token 2% through a linear classi-
fier head:

Y= LN(Z%)WC

where W, € R4%3,

This approach was motivated by the idea that the best
way to learn semantically meaningful representations
is to penalize when those representations are not pre-
dictive.



4.3 Self-Supervised Pretraining with Masked
Autoencoders

My second approach employs MAE, a form of self-
supervised learning, on unlabeled candlestick chart
data. Unlike the other model, there is no direct clas-
sification objective. Instead, the MAE framework
learns meaningful representations by reconstructing
randomly masked portions of input images, forcing the
model to develop a rich understanding of candlestick
patterns. I randomly mask m = 75% of image patches
and train the model to reconstruct the original image.
The MAE architecture consists of an encoder fy that
processes only visible patches and a lightweight de-
coder g4 that reconstructs the full image from the en-
coded representation.

The masking process follows a random sampling strat-
egy where, for each image,l sample a random permu-
tation 7 of patch indices and keep only the first [ N (1—
m)] patches. The encoder processes these visible
patches through the standard ViT architecture, while
masked patches are replaced with learnable mask to-
kens before being processed by the decoder. The re-
construction loss is computed only on masked patches:

1 .2
LMag = ] iezz\:/[ lz; — &

where M denotes the set of masked patch indices, x;
is the original patch, and &; is the reconstruction. This
objective encourages the model to learn rich repre-
sentations that capture the essential structure of can-
dlestick patterns, as accurate reconstruction requires
understanding both local patterns (individual candle
shapes) and global context (trend formations).

4.4 Implementation Details

All models are trained using the AdamW optimizer
(Loshchilov & Hutter, 2019) with weight decay A =
0.05 to prevent overfitting. For both models,I finetuned
over 30 epochs with batch size set to 128 for optimal
GPU utilization on a NVIDIA L4 VM. Training took
approximately 2 hours per model on the VMs.

Data augmentation is kept minimal to preserve the in-
tegrity of candlestick patterns. I apply only slight hori-
zontal shifts (10% of image width) to simulate differ-
ent time window selections, avoiding rotations or color
distortions that would destroy the semantic meaning
of price movements. All images are normalized using
ImageNet statistics (mean = [0.485, 0.456, 0.406], std
=1[0.229,0.224, 0.225]) to maintain compatibility with
pretrained weights.
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Figure 2. Example of MAE Reconstruction

4.5 Interpretability Analysis

To understand what patterns the MAE model learned,
I perform clustering analysis on the learned represen-
tations to discover groups of similar patterns.I extract
feature vectors from the encoder’s output (the trans-
formed classification token) for all test samples and
apply K-means clustering with k& = 20 clusters. For
each cluster,I analyze the distribution of true labels to
assess predictiveness, calculating the cluster purity as:

Pe = Max (pdowna Pflat, pup)

where p,, represents the proportion of samples with la-
bel y in cluster c. Clusters with high purity indicate
that the model has learned to group patterns with sim-
ilar predictive outcomes, validating the existence of
meaningful visual patterns in candlestick charts.



5. Experiments
5.1. Baselines

We used two non-vision baselines, to represent strate-
gies that are more commonly used in the financial
world for price forecasting.

(a) RSI Statistical Strategy: Uses common statistical
indicators to identify potential trend reversals and
confirm overbought/oversold conditions. Specif-
ically, RSI (Relative Strength Index) is the mag-
nitude of recent price changes and is widely used
in fundamental analysis in the finance world.
In this study, I considered oversold conditions
to predict an upward movement and overbought
to predict downwards movement (neutral condi-
tions were considered to be a ’flat” prediction).

(b) A RNN with LSTM architecture trained for time-
series prediction. It employs three hidden layers
with 128, 64, and 32 units respectively, dropout
rates of 0.2 between layers, and tanh activation

functions.
5.2. Results
Model Flat Up Down
RSI Strategy 032 0.13 0.16
RNN 038 0.05 0.03
ViT Classifier 0.81 0.32 0.39
ViT MAE Clustered 0.86 0.47 042

Table 1. Class-wise accuracy for different models predicting asset
price movement

N Samples | Dominant Class | Purity % | Accuracy
2271 Flat 90.84 90.51
2782 Flat 89.22 88.89
2782 Flat 88.17 87.84
3153 Flat 88.07 87.74
1783 Flat 88.05 87.72
2569 Flat 87.70 87.37
2949 Flat 87.66 87.33
3206 Flat 87.52 87.19
2764 Flat 87.05 86.72
3590 Flat 87.02 86.69

Table 2. Top-10 Performing MAE Clusters

6. Conclusion

This work demonstrates that Vision Transformers can
successfully learn predictive patterns from candlestick
charts, achieving high accuracy on short-term price
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movement prediction—far exceeding numerical RNN's
and traditional technical indicators. Our key findings:

1. Candlestick patterns may contain genuine predic-
tive signal, validating their use in technical analysis
2. Self-supervision leads to highly effective cluster-
ing with substantial increase in predictive power over
the multi-class classifier. 3. MAE gives transformers a
strong ability to reconstruct candlestick charts.

6.1. Limitations

1. Limited to liquid stocks in normal market conditions
2. Does not incorporate volume or fundamental data
3. Restricted to intraday movement using a 2.5 hour
window and 25 minute prediction window. 4. Most
importantly: our models did much better at predicting
no movement than they did up/down.

6.2. Future Work

1.Extend to multi-modal models incorporating news
sentiment 2. Test on other asset classes (forex, cryp-
tocurrencies, commodities) 3. Develop real-time trad-
ing system with proper risk management 4. Investigate
longer-term patterns with daily/weekly candles
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