Glimpse Attention Models

Victor Ng

victorng@stanford.edu

Abstract

This study investigates the application of transformer
architectures to recurrent attention models (RAMs) for
image classification tasks. Traditional RAMs utilize
recurrent neural networks to sequentially process
glimpses of an image, but recent advances in transformer
architectures suggest potential improvements in modeling
global dependencies between glimpses. A transformer-
based attention mechanism that replaces the RNN
components in RAMs with an encoder-decoder
transformer architecture, where glimpse vectors are
processed through an encoder and the resulting
representations are used as memory for an autoregressive
decoder. Experiments on the Street View House Numbers
(SVHN) dataset demonstrate that while transformer-based
RAMs achieve competitive accuracy (94.81% with optimal
hyperparameters), they require significantly —more
computational resources than their RNN counterparts.
Comprehensive ablation studies on patch size, number of
glimpses, learning rates, and hidden dimensions, reveal
that 12 pixel patches and 3 or 6 glimpses provide optimal
performance.

1. Introduction

Convolutional neural networks and vision transformers
have both been very successful in image classification and
object recognition. However, one of the primary
drawbacks of these networks is their linear or quadratic
scaling with image resolution, requiring less than ideal
solutions such as down-sampling images or running on
more powerful hardware.

Semi-sparse image recognition models like Recurrent
Attention Models [1, 2] have taken inspiration from the
way humans perform image recognition tasks. RAMs are
sequence models that at each step process a local view of
the image, called a glimpse, which it then uses to update
an internal hidden state and output the next glimpse
location. The process continues until the model decides
that there are no more objects to process.

The benefit of RAMs is that they scale well with image
resolution. While an initial low-resolution feature map is
required to provide initial context, the full-resolution

image is only processed with sparse glimpses which do
not scale with resolution.

This work aims to improve upon the performance of
RAMs by replacing the RNN with a transformer encoder-
decoder architecture [3]. A key limitation of RNNs is that
they compress glimpse information into fixed-size hidden
states, potentially losing important spatial relationships
between glimpses. Instead of each glimpse being used to
update the hidden state of an RNN, each glimpse will be
processed as a token and passed into a transformer
decoder block. The output token will then be used to
predict the next glimpse location.

2. Related Works

First, [1] introduced RAMs which use a recurrent neural
network to process sequentially sampled glimpses from an
image. Their model demonstrated that attention-based
processing can be more efficient than convolutional
approaches for large images, as computation remains
constant regardless of image size. The RAM architecture
consists of a glimpse network, a recurrent core network, a
location network, and an action network, trained end-to-
end using reinforcement learning.

Second, [2] extended the RAM framework to address
multiple object recognition tasks, showing how attention
mechanisms can effectively transcribe multi-digit
sequences from real-world images. Their approach
highlighted the ability of recurrent attention models to
outperform convolutional networks on cluttered images
while using fewer parameters and less computation.

Third, [3] presented the Transformer architecture that
relies entirely on attention mechanisms without fixed-size
hidden states. Their work showed that self-attention
mechanisms allow modeling of dependencies without
regard to distance in the input sequence, enabling more
effective capture of global relationships.

3. Method

The proposed method, which is called Glimpse
Attention Models (GAM), replaces the RNN in the
original RAM with a transformer decoder architecture.
This fundamental change aims to better capture the
relationships between glimpses through global attention
mechanisms rather than compressed hidden states.

Classifier location location location location
vector vector vector vector
t=0 t=1 t=2 t=3
A
Passed into decoder T T T T
refined refined refined refined
Global glimpse glimpse glimpse glimpse I Transformer Decoder
Context vector vector vector vector
t=0 =1 =2 =3
A A A A
T glimpse glimpse glimpse
Transformer Encoder =0 location location location
- t=1 t=2 t=3
start glimpse glimpse glimpse
=0 vector vector vector
=1 =2 =3

Figure 1: Structure of Transformer encoder-decoder network

3.1. Architecture

GAM follows the general structure of RAM, with
similar sub-networks.

Glimpse Network

The glimpse network extracts useful features from the
current glimpse X, at location I, = (Xn, yn) in the input
image. For each glimpse, k square patches centered at
location 1, are extracted, with each patch having
progressively lower resolution as they move outward.

Following [2], the glimpse network consists of three
convolutional layers followed by a fully connected layer.
Additionally, the location tuple is transformed by an MLP
into the same dimensionality as the processed glimpse.
Then both the “what” and “where” information is
combined via element-wise multiplication.

Zn = Gimage(xn) O] Gloc(ln) (1)

Additionally, glimpses are refined by passing them into
a transformer encoder layer, to let glimpses attend to each
other. This allows both glimpses from different parts of
the image to attend to each other.

Context Network

The context network provides features of the entire
input image and is used to determine where to take the
first glimpse. The network takes a down-sampled version
of the entire input image and outputs a fixed length vector
C,. The goal of the context network is to provide

reasonable ideas of where interesting parts of the network
are. Following [2], it consists of three convolutional
layers.

Transformer Network

Instead of wusing an RNN to process glimpse
representations sequentially, an autoregressive transformer
encoder-decoder architecture is used (Figure 1).

For any given glimpse, all glimpses taken so far are
passed into a transformer encoder, where each glimpse
vector can attend to each other. Glimpses of different parts
of the image can communicate with each other, enriching
their representations. Critically, the global context from
the context network is not passed into the encoder for
reasons which will be explained later. Only after the
encoder is the global context combined with the enriched
glimpse vectors to be passed as memory.

On the decoder side, all predicted (x,y) locations from
the location network are passed in as queries. The self-
attention layers of the decoder allow the different glimpse
locations to attend to each other, allowing the prediction of
the next location to be conditioned on what areas have
already been visited. There is also cross-attention with the
enriched glimpse vectors and global context, which allows
the network to, from a semantic point of view, determine
where to look next.

Unlike RNNs, which compress all previous glimpse
information into a fixed-size hidden state, the
transformer's self-attention mechanism allows each new
glimpse to directly access and attend to all previous
glimpses, potentially capturing more complex
relationships.

Location Network

The location network predicts the next glimpse location
based on the most recent location vector from the
transformer decoder. It consists of an MLP that maps the
most recent location vector to the parameters of a normal
distribution. During training, the next location coordinate
tuple ly+1 is sampled from this distribution, while during
inference the mean of the distribution is used directly.

Classification Network

The classification network outputs a class label for the
image based on the glimpses of the image and consists of
an MLP. The MLP takes as input the last glimpse token
from the transformer encoder and outputs the class label.

The output of the transformer decoder is specifically not
used for classification as its outputs have been attended to
by the initial context vector C,. The network could learn to
rely on this context vector instead of combining
information from the glimpses. This is undesirable
behavior as the network should learn to depend on its
glimpses for high-quality image information rather than
the low-resolution Cy.

3.2. Forward Pass

For a given image (see Figure 2), the image is first
downsampled to a fixed-resolution and passed into the
Context Network to generate the global context. Next
using the global context, a learned start token for the
glimpse vectors, and a learned start token for the locations,
the Transformer model outputs a location vector. This
location vector is then passed into the location network to
predict the x,y location of the next glimpse. The glimpse is
sampled from the image and passed into the Glimpse
Network, which outputs a glimpse vector. The global
context, accumulated glimpse vectors, and accumulated
locations are then passed into the Transformer model once
again. This cycle repeats until the target number of
glimpses occurs. The number of glimpses is a
hyperparameter.

3.3. Training Algorithm

The model is trained via reinforcement learning due to
the non-differentiable nature of location selection.
Referencing [2], REINFORCE [7] is used to train the
model.

For each object in the image, the model will be
rewarded with a reward of 1 if the object was properly
classified and a reward of 0 otherwise. When rewarded,
the model will be updated to maximize the probability of
each glimpse being chosen.

Classification
Network

Content
Vector
|

Global

» RNN [/ Transformer €———

Context
A
Location Vector
Location Context
Network Network
Downsampled
) 4
glimpse glimpse
vector location
r'y Image
-~ Y -
Glimpse
Network

Figure 2: Logical flow of RAM

4. Dataset

The publicly available single-digit street view house
number (SVHN) dataset [5] consists of 32x32 images of
digits taken from pictures of house numbers. The train set
consists of both the “train” and “extra” datasets, for a total
of 604,388 images. Of these images 10% are set aside as
validation images to select hyperparameters. Testing is
done on the “test” split of 26,032 images.

Figure 3: Example image from SVHN

5. Experiments

5.1. Experiment Setup

Both architectures are implemented from scratch in
PyTorch to ensure fair comparison and precise control
over architectural details. The baseline RNN model
follows the original RAM architecture [2] using LSTM
cells, while the transformer model implements the
encoder-decoder structure described in the methods
section.

All experiments use identical context network
architectures consisting of three convolutional layers with
64, 64, and 128 output filters and kernel sizes of 5, 3, 3
respectively, followed by fully connected layers that
produce 1024-dimensional glimpse representations. The
location network generates 2D coordinates through a two-
layer MLP with tanh activations, while the action network
uses a standard classifier head with softmax output. The
REINFORCE reward baseline is implemented as a
separate network that predicts expected rewards given
glimpse sequences.

Training employs the Adam optimizer with gradient
clipping to ensure stable convergence. A batch size of 128
is used across all experiments and the final models are
trained for 100,000 iterations.

Performance is measured using top-1 classification
accuracy, measured as the number of images with a
correct prediction divided by the number of images.

5.2. Hyperparameter Optimization

Hyperparameter optimization was conducted across
learning rates, hidden dimensions, glimpse sizes, and
number of glimpses. Hyperparameter optimization is run
for 10,000 steps and the hyperparameter with the best
validation accuracy is used in the final model.

5.3. Learning Rate

Various learning rates are searched over, revealing 1e-4
as the optimal choice. Learning rates adjacent to 1e-4
show promise but either converge too slowly or have a
learning rate that is too high also leading to slower
convergence.

Table 1: Learning Rate vs. Validation Accurac

Learning Rate Validation Accuracy
le-2 19.59%
le-3 71.30%
le-4 83.54%
le-5 75.53%

5.4. Hidden Dimension

Hidden dimension analysis demonstrates that 64-
dimensional hidden states provide optimal performance

for our task setup. Interestingly, performance degrades
when the hidden dimension exceeds 256. One hypothesis
is that the model overfits well enough that it memorizes
the training data and can successfully classify training data
even with degenerate glimpse sequences, leading to poor
generalization on the test set.

Table 2: Hidden dimension vs validation accuracy

Hidden Dimension Validation Accuracy
64 84.43%

128 63.8%

256 17.2%

104 17.1 %

5.5. Number of Glimpses

One of the key advantages of attention models is their
ability to trade off compute for performance by changing
the number of glimpses. Both the number of glimpses and
glimpse size are ablated to evaluate this tradeoff.

Patch sizes of 8x8, 12x12, and 16x16 pixels are
evaluated in combination with 3 and 6 glimpses per image.
Increasing patch size and number of glimpses increases
the amount of computation required per image but
theoretically allows the model to see more of the image.

In practice, increasing patch size and number of
glimpses does increase performance. The performance
boost via increase in patch size is most noticeable when
moving from 8x8 to 12x12 patches and saturates after.
Increasing number of glimpses is most noticeable with a
smaller patch size as well, with the largest difference of
2.51% occurring at patch size 8x8.

This is likely because with larger patch sizes, the model
can already view enough of the image to make an accurate
classification. As the patch size decreases, the model sees
less of the image at a time and benefits more from the
increased number of glimpses.

Table 3: Patch size and number of glimpses vs. Validation

Accuracy
Glimpses
Patch Size 3 6
8x8 92.24% | 94.75%
12x12 96.68% | 97.02%
16x16 96.85% | 96.08%
5.6. Speed

One tradeoff of Transformers is their more intensive
compute. To compare the throughput of the RNN based
model and the Transformer based model, representative
models with similar validation accuracies are
benchmarked. The RNN is the baseline model mentioned
in the experiment setup and the Transformer model is

Original Image Glimpse 1 Glimpse 2 Glimpse 3

Original Image Glimpse 1 Glimpse 2 Glimpse 3

L L] L]

! ' .

Original Image Glimpse 1 Glimpse 2 Glimpse 3

g1 151 191 9l

Figure 4: Each row represents the glimpse sequence for a 3-glimpse Transformer based RAM. The red squares
represent the sampled patches for that glimpse. Row 1) A correct classification. The model takes a top-down approach
to its glimpses. Row 2) An incorrect classification. The model classified the 6 incorrectly as a 0. The model only
noticed the bottom half of the 6, leading to a misclassification. Row 3) A correct classification. The model is
mistakenly drawn to the bottom-right of the image, likely due to the strong edge on the right side. It corrects its mistake
in the following glimpses and successfully classifies the image as a 3.

The Transformer based RAM achieves a similar
performance to the RNN, with a test accuracy that is
within measurement noise of the RNN baseline.

Both methods successfully learn a policy that explores

using a hidden dimension of 64 with one encoder layer
and one decoder layer.

Table 4: Throughput of RAM models on an RTX 3080

Model Images per second the image via glimpses.
RNN (3 glimpses 8x8 patch) 9088 One hypothesis is that Transformer’s advantage of
RNN (6 glimpses 8x8 patch) 6656 RNN:ss is their ability to model long sequences without

compression and the ability to model more complex
relationships. The single-digit SVHN task may be too
simple a task for Transformer networks to see a benefit

Transformer (3 glimpses 8x8 patch) | 5248
Transformer (6 glimpses 8x8 patch) | 3328

Even with a much lighter model, the Transformer based
RAM is 1.7x slower than the RNN architecture, due to the
quadratic nature of transformer attention.

5.7. Model Comparison and Performance Analysis

The final transformer model is trained with a hidden
dimension of 64, 6 glimpses, and a patch size of 12x12,
representing the best performing hyperparameters in the
search.

over RNNS. Tasks like optical character recognition may
be a better target for Transformer RAMs due to their
potentially very long sequences.

Table 5: Test accuracy of RAMs

Model Test
Accuracy

RNN Baseline (6 glimpses 12x12 patch) 94.72%

Transformer RAM (6 glimpse 12x12 patch) 94.81%

5.8. Qualitative Analysis of Glimpses

The model generally takes either a top-down or bottom-
up flow when choosing its glimpses. The first row of
Figure 4 shows a typical glimpse trajectory, starting from
the top of the image and incrementally moving downward
to view the points of interest. Since single-digit SVHN
contains centered digits, most movement of the glimpse
occurs in the y direction, as digits are generally taller than
they are wide.

The second row of Figure 4 shows a failure case where
the model misclassifies a 6 as a 0. The glimpse provides
some intuition as to why, as no glimpse ever views the top
portion of the 6, and the bottom half of a 6 is very similar
to a 0. This either indicates that the context network did
not represent the top half of the 6 well or that the
Transformer network did not identify the top-half to be
semantically relevant.

The third row of Figure 4 shows a recovered
classification, where the network mistakenly chooses the
bottom-right of the image as one of the glimpses before
recovering and correctly predicting the image as a 3. The
model was likely drawn to the strong edge on the right
side of the image. It then managed to recover by returning
the remaining glimpses to the actual object in the image.
This demonstrates a robustness of RAM models, where
having multiple glimpses provides redundancy, allowing
the model to make some mistakes while still being able to
classify the image correctly.

6. Conclusion

This work presents a systematic investigation of
transformer architectures for recurrent attention models in
image classification. The encoder-decoder transformer
architecture is competitive with traditional RNN
architectures while maintaining the sequential glimpse-
based processing paradigm that makes attention models
computationally efficient for large images.

The experimental results demonstrate that transformer-
based attention models can achieve competitive
performance on the SVHN dataset, with optimal
configurations reaching 94.81% accuracy using 6 glimpses
of 12-pixel patches. However, this comes at significant
computational cost, with inference times 1.7x higher than
equivalent RNN models due to the quadratic scaling of
attention mechanisms.

Several key insights emerge from the evaluation. First,
glimpse count optimization reveals diminishing returns
beyond 3 glimpses, suggesting that effective attention
strategies can be learned with relatively few sequential
observations. Second, patch size selection noticeably
impacts performance, with 12-pixel patches providing
optimal information density for digit recognition tasks.

Future work could explore several promising directions.
Investigating more complex visual reasoning tasks that
better exploit transformer capabilities could reveal

scenarios where the computational overhead is justified by
performance gains. Additionally, investigating efficient
attention mechanisms that reduce the quadratic scaling
while preserving global modeling capabilities remains an
important research challenge.

7. Contributions & Acknowledgements

All code, models, experiments, and reports were
created, trained, and run by me. I had no collaborators, and
this project was done solely for CS231n.

The baseline RAM model and training was
reimplemented from scratch and based on the code from
[6]. Additionally, code for positional encoding and
Transformer data flow was referenced from CS231n
Assignment 3.

References

[1] V. Mnih, N. Heess, A. Graves, K. Kavukcuoglu, and G.
Deepmind, “Recurrent Models of Visual Attention.”, 2014.

[2] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple Object
Recognition with Visual Attention”, 2015.

[3] A. Vaswani et al., “Attention Is All You Need,” 2017.

[4] A. Paszke et al.,, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” CoRR, vol
abs/1912.01703, 2019

[5] Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, Andrew Y. Ng, Reading Digits in Natural
Images with Unsupervised Feature Learning NIPS
Workshop on Deep Learning and Unsupervised Feature
Learning 2011

[6] T. Tianyu, Visual Attention Model [Source code] 2017
https://github.com/tianyu-tristan/Visual-Attention-
Model/tree/master?tab=readme-ov-file

[7T R. J. Williams, “Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning,”
Machine Learning, vol. 8, pp. 229-256, 2004

https://github.com/tianyu-tristan/Visual-Attention-Model/tree/master?tab=readme-ov-file
https://github.com/tianyu-tristan/Visual-Attention-Model/tree/master?tab=readme-ov-file

