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Abstract 

 

This study investigates the application of transformer 

architectures to recurrent attention models (RAMs) for 

image classification tasks. Traditional RAMs utilize 

recurrent neural networks to sequentially process 

glimpses of an image, but recent advances in transformer 

architectures suggest potential improvements in modeling 

global dependencies between glimpses. A transformer-

based attention mechanism that replaces the RNN 

components in RAMs with an encoder-decoder 

transformer architecture, where glimpse vectors are 

processed through an encoder and the resulting 

representations are used as memory for an autoregressive 

decoder. Experiments on the Street View House Numbers 

(SVHN) dataset demonstrate that while transformer-based 

RAMs achieve competitive accuracy (94.81% with optimal 

hyperparameters), they require significantly more 

computational resources than their RNN counterparts. 

Comprehensive ablation studies on patch size, number of 

glimpses, learning rates, and hidden dimensions, reveal 

that 12 pixel patches and 3 or 6 glimpses provide optimal 

performance. 

1. Introduction 

Convolutional neural networks and vision transformers 

have both been very successful in image classification and 

object recognition. However, one of the primary 

drawbacks of these networks is their linear or quadratic 

scaling with image resolution, requiring less than ideal 

solutions such as down-sampling images or running on 

more powerful hardware. 

Semi-sparse image recognition models like Recurrent 

Attention Models [1, 2] have taken inspiration from the 

way humans perform image recognition tasks. RAMs are 

sequence models that at each step process a local view of 

the image, called a glimpse, which it then uses to update 

an internal hidden state and output the next glimpse 

location. The process continues until the model decides 

that there are no more objects to process. 

The benefit of RAMs is that they scale well with image 

resolution. While an initial low-resolution feature map is 

required to provide initial context, the full-resolution 

image is only processed with sparse glimpses which do 

not scale with resolution. 

This work aims to improve upon the performance of 

RAMs by replacing the RNN with a transformer encoder-

decoder architecture [3]. A key limitation of RNNs is that 

they compress glimpse information into fixed-size hidden 

states, potentially losing important spatial relationships 

between glimpses. Instead of each glimpse being used to 

update the hidden state of an RNN, each glimpse will be 

processed as a token and passed into a transformer 

decoder block. The output token will then be used to 

predict the next glimpse location. 

 

2. Related Works 

First, [1] introduced RAMs which use a recurrent neural 

network to process sequentially sampled glimpses from an 

image. Their model demonstrated that attention-based 

processing can be more efficient than convolutional 

approaches for large images, as computation remains 

constant regardless of image size. The RAM architecture 

consists of a glimpse network, a recurrent core network, a 

location network, and an action network, trained end-to-

end using reinforcement learning.  

Second, [2] extended the RAM framework to address 

multiple object recognition tasks, showing how attention 

mechanisms can effectively transcribe multi-digit 

sequences from real-world images. Their approach 

highlighted the ability of recurrent attention models to 

outperform convolutional networks on cluttered images 

while using fewer parameters and less computation.  

Third, [3] presented the Transformer architecture that 

relies entirely on attention mechanisms without fixed-size 

hidden states. Their work showed that self-attention 

mechanisms allow modeling of dependencies without 

regard to distance in the input sequence, enabling more 

effective capture of global relationships. 

 

3. Method 

The proposed method, which is called Glimpse 

Attention Models (GAM), replaces the RNN in the 

original RAM with a transformer decoder architecture. 

This fundamental change aims to better capture the 

relationships between glimpses through global attention 

mechanisms rather than compressed hidden states. 

 

Glimpse Attention Models 
 

  

Victor Ng 
victorng@stanford.edu 

 



 

2 

3.1. Architecture 

GAM follows the general structure of RAM, with 

similar sub-networks. 

Glimpse Network 

The glimpse network extracts useful features from the 

current glimpse xn at location ln = (xn, yn) in the input 

image. For each glimpse, k square patches centered at 

location ln are extracted, with each patch having 

progressively lower resolution as they move outward. 

Following [2], the glimpse network consists of three 

convolutional layers followed by a fully connected layer. 

Additionally, the location tuple is transformed by an MLP 

into the same dimensionality as the processed glimpse. 

Then both the “what” and “where” information is 

combined via element-wise multiplication. 

 

gn = Gimage(xn) ⊙ Gloc(ln)       (1) 

  

Additionally, glimpses are refined by passing them into 

a transformer encoder layer, to let glimpses attend to each 

other. This allows both glimpses from different parts of 

the image to attend to each other. 

Context Network 

The context network provides features of the entire 

input image and is used to determine where to take the 

first glimpse. The network takes a down-sampled version 

of the entire input image and outputs a fixed length vector 

Cn. The goal of the context network is to provide 

reasonable ideas of where interesting parts of the network 

are. Following [2], it consists of three convolutional 

layers. 

Transformer Network 

Instead of using an RNN to process glimpse 

representations sequentially, an autoregressive transformer 

encoder-decoder architecture is used (Figure 1). 

For any given glimpse, all glimpses taken so far are 

passed into a transformer encoder, where each glimpse 

vector can attend to each other. Glimpses of different parts 

of the image can communicate with each other, enriching 

their representations. Critically, the global context from 

the context network is not passed into the encoder for 

reasons which will be explained later. Only after the 

encoder is the global context combined with the enriched 

glimpse vectors to be passed as memory.  

On the decoder side, all predicted (x,y) locations from 

the location network are passed in as queries. The self-

attention layers of the decoder allow the different glimpse 

locations to attend to each other, allowing the prediction of 

the next location to be conditioned on what areas have 

already been visited. There is also cross-attention with the 

enriched glimpse vectors and global context, which allows 

the network to, from a semantic point of view, determine 

where to look next. 

Unlike RNNs, which compress all previous glimpse 

information into a fixed-size hidden state, the 

transformer's self-attention mechanism allows each new 

glimpse to directly access and attend to all previous 

glimpses, potentially capturing more complex 

relationships. 

Figure 1: Structure of Transformer encoder-decoder network 
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Location Network 

The location network predicts the next glimpse location 

based on the most recent location vector from the 

transformer decoder. It consists of an MLP that maps the 

most recent location vector to the parameters of a normal 

distribution. During training, the next location coordinate 

tuple ln+1 is sampled from this distribution, while during 

inference the mean of the distribution is used directly. 

Classification Network 

The classification network outputs a class label for the 

image based on the glimpses of the image and consists of 

an MLP. The MLP takes as input the last glimpse token 

from the transformer encoder and outputs the class label. 

 The output of the transformer decoder is specifically not 

used for classification as its outputs have been attended to 

by the initial context vector Cn. The network could learn to 

rely on this context vector instead of combining 

information from the glimpses. This is undesirable 

behavior as the network should learn to depend on its 

glimpses for high-quality image information rather than 

the low-resolution Cn.  

3.2. Forward Pass 

For a given image (see Figure 2), the image is first 

downsampled to a fixed-resolution and passed into the 

Context Network to generate the global context. Next 

using the global context, a learned start token for the 

glimpse vectors, and a learned start token for the locations, 

the Transformer model outputs a location vector. This 

location vector is then passed into the location network to 

predict the x,y location of the next glimpse. The glimpse is 

sampled from the image and passed into the Glimpse 

Network, which outputs a glimpse vector. The global 

context, accumulated glimpse vectors, and accumulated 

locations are then passed into the Transformer model once 

again. This cycle repeats until the target number of 

glimpses occurs. The number of glimpses is a 

hyperparameter. 

3.3. Training Algorithm 

The model is trained via reinforcement learning due to 

the non-differentiable nature of location selection. 

Referencing [2], REINFORCE [7] is used to train the 

model. 

 For each object in the image, the model will be 

rewarded with a reward of 1 if the object was properly 

classified and a reward of 0 otherwise. When rewarded, 

the model will be updated to maximize the probability of 

each glimpse being chosen. 

 

 

 
4. Dataset 

The publicly available single-digit street view house 

number (SVHN) dataset [5] consists of 32x32 images of 

digits taken from pictures of house numbers. The train set 

consists of both the “train” and “extra” datasets, for a total 

of 604,388 images. Of these images 10% are set aside as 

validation images to select hyperparameters. Testing is 

done on the “test” split of 26,032 images. 

 

 

 
 

 

Figure 3: Example image from SVHN 

Figure 2: Logical flow of RAM 
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5. Experiments 

5.1. Experiment Setup 

Both architectures are implemented from scratch in 

PyTorch to ensure fair comparison and precise control 

over architectural details. The baseline RNN model 

follows the original RAM architecture [2] using LSTM 

cells, while the transformer model implements the 

encoder-decoder structure described in the methods 

section. 

All experiments use identical context network 

architectures consisting of three convolutional layers with 

64, 64, and 128 output filters and kernel sizes of 5, 3, 3 

respectively, followed by fully connected layers that 

produce 1024-dimensional glimpse representations. The 

location network generates 2D coordinates through a two-

layer MLP with tanh activations, while the action network 

uses a standard classifier head with softmax output. The 

REINFORCE reward baseline is implemented as a 

separate network that predicts expected rewards given 

glimpse sequences. 

Training employs the Adam optimizer with gradient 

clipping to ensure stable convergence. A batch size of 128 

is used across all experiments and the final models are 

trained for 100,000 iterations. 

 Performance is measured using top-1 classification 

accuracy, measured as the number of images with a 

correct prediction divided by the number of images. 

5.2. Hyperparameter Optimization 

Hyperparameter optimization was conducted across 

learning rates, hidden dimensions, glimpse sizes, and 

number of glimpses. Hyperparameter optimization is run 

for 10,000 steps and the hyperparameter with the best 

validation accuracy is used in the final model. 

5.3. Learning Rate 

Various learning rates are searched over, revealing 1e-4 

as the optimal choice. Learning rates adjacent to 1e-4 

show promise but either converge too slowly or have a 

learning rate that is too high also leading to slower 

convergence. 

 

Table 1: Learning Rate vs. Validation Accuracy 

Learning Rate Validation Accuracy 

1e-2 19.59% 

1e-3 71.30% 

1e-4 83.54% 

1e-5 75.53% 

5.4. Hidden Dimension 

Hidden dimension analysis demonstrates that 64-

dimensional hidden states provide optimal performance 

for our task setup. Interestingly, performance degrades 

when the hidden dimension exceeds 256. One hypothesis 

is that the model overfits well enough that it memorizes 

the training data and can successfully classify training data 

even with degenerate glimpse sequences, leading to poor 

generalization on the test set. 

 

Table 2: Hidden dimension vs validation accuracy 

Hidden Dimension Validation Accuracy 

64 84.43% 

128 63.8% 

256 17.2% 

104 17.1 % 

5.5. Number of Glimpses 

One of the key advantages of attention models is their 

ability to trade off compute for performance by changing 

the number of glimpses. Both the number of glimpses and 

glimpse size are ablated to evaluate this tradeoff. 

Patch sizes of 8x8, 12x12, and 16x16 pixels are 

evaluated in combination with 3 and 6 glimpses per image. 

Increasing patch size and number of glimpses increases 

the amount of computation required per image but 

theoretically allows the model to see more of the image.  

In practice, increasing patch size and number of 

glimpses does increase performance. The performance 

boost via increase in patch size is most noticeable when 

moving from 8x8 to 12x12 patches and saturates after. 

Increasing number of glimpses is most noticeable with a 

smaller patch size as well, with the largest difference of 

2.51% occurring at patch size 8x8. 

This is likely because with larger patch sizes, the model 

can already view enough of the image to make an accurate 

classification. As the patch size decreases, the model sees 

less of the image at a time and benefits more from the 

increased number of glimpses. 

 

Table 3: Patch size and number of glimpses vs. Validation 

Accuracy 

 # Glimpses 

Patch Size 3 6 

8x8 92.24% 94.75% 

12x12 96.68% 97.02% 

16x16 96.85% 96.08% 

5.6. Speed 

One tradeoff of Transformers is their more intensive 

compute. To compare the throughput of the RNN based 

model and the Transformer based model, representative 

models with similar validation accuracies are 

benchmarked. The RNN is the baseline model mentioned 

in the experiment setup and the Transformer model is 
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using a hidden dimension of 64 with one encoder layer 

and one decoder layer. 

 

Table 4: Throughput of RAM models on an RTX 3080 

Model Images per second  

RNN (3 glimpses 8x8 patch) 9088 

RNN (6 glimpses 8x8 patch) 6656 

Transformer (3 glimpses 8x8 patch) 5248 

Transformer (6 glimpses 8x8 patch) 3328 

 

Even with a much lighter model, the Transformer based 

RAM is 1.7x slower than the RNN architecture, due to the 

quadratic nature of transformer attention. 

5.7. Model Comparison and Performance Analysis 

The final transformer model is trained with a hidden 

dimension of 64, 6 glimpses, and a patch size of 12x12, 

representing the best performing hyperparameters in the 

search. 

The Transformer based RAM achieves a similar 

performance to the RNN, with a test accuracy that is 

within measurement noise of the RNN baseline. 

Both methods successfully learn a policy that explores 

the image via glimpses. 

One hypothesis is that Transformer’s advantage of 

RNNs is their ability to model long sequences without 

compression and the ability to model more complex 

relationships. The single-digit SVHN task may be too 

simple a task for Transformer networks to see a benefit 

over RNNs. Tasks like optical character recognition may 

be a better target for Transformer RAMs due to their 

potentially very long sequences. 

 

Table 5: Test accuracy of RAMs 

Model Test 

Accuracy 

RNN Baseline (6 glimpses 12x12 patch) 94.72% 

Transformer RAM (6 glimpse 12x12 patch) 94.81% 

Figure 4: Each row represents the glimpse sequence for a 3-glimpse Transformer based RAM. The red squares 

represent the sampled patches for that glimpse. Row 1) A correct classification. The model takes a top-down approach 

to its glimpses. Row 2) An incorrect classification. The model classified the 6 incorrectly as a 0. The model only 

noticed the bottom half of the 6, leading to a misclassification. Row 3) A correct classification. The model is 

mistakenly drawn to the bottom-right of the image, likely due to the strong edge on the right side. It corrects its mistake 

in the following glimpses and successfully classifies the image as a 3. 
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5.8. Qualitative Analysis of Glimpses  

The model generally takes either a top-down or bottom-

up flow when choosing its glimpses. The first row of 

Figure 4 shows a typical glimpse trajectory, starting from 

the top of the image and incrementally moving downward 

to view the points of interest. Since single-digit SVHN 

contains centered digits, most movement of the glimpse 

occurs in the y direction, as digits are generally taller than 

they are wide. 

The second row of Figure 4 shows a failure case where 

the model misclassifies a 6 as a 0. The glimpse provides 

some intuition as to why, as no glimpse ever views the top 

portion of the 6, and the bottom half of a 6 is very similar 

to a 0. This either indicates that the context network did 

not represent the top half of the 6 well or that the 

Transformer network did not identify the top-half to be 

semantically relevant. 

The third row of Figure 4 shows a recovered 

classification, where the network mistakenly chooses the 

bottom-right of the image as one of the glimpses before 

recovering and correctly predicting the image as a 3. The 

model was likely drawn to the strong edge on the right 

side of the image. It then managed to recover by returning 

the remaining glimpses to the actual object in the image. 

This demonstrates a robustness of RAM models, where 

having multiple glimpses provides redundancy, allowing 

the model to make some mistakes while still being able to 

classify the image correctly. 

 

6. Conclusion 

This work presents a systematic investigation of 

transformer architectures for recurrent attention models in 

image classification. The encoder-decoder transformer 

architecture is competitive with traditional RNN 

architectures while maintaining the sequential glimpse-

based processing paradigm that makes attention models 

computationally efficient for large images. 

The experimental results demonstrate that transformer-

based attention models can achieve competitive 

performance on the SVHN dataset, with optimal 

configurations reaching 94.81% accuracy using 6 glimpses 

of 12-pixel patches. However, this comes at significant 

computational cost, with inference times 1.7x higher than 

equivalent RNN models due to the quadratic scaling of 

attention mechanisms. 

Several key insights emerge from the evaluation. First, 

glimpse count optimization reveals diminishing returns 

beyond 3 glimpses, suggesting that effective attention 

strategies can be learned with relatively few sequential 

observations. Second, patch size selection noticeably 

impacts performance, with 12-pixel patches providing 

optimal information density for digit recognition tasks. 

Future work could explore several promising directions. 

Investigating more complex visual reasoning tasks that 

better exploit transformer capabilities could reveal 

scenarios where the computational overhead is justified by 

performance gains. Additionally, investigating efficient 

attention mechanisms that reduce the quadratic scaling 

while preserving global modeling capabilities remains an 

important research challenge. 
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