

1

Abstract

This study investigates the application of transformer

architectures to recurrent attention models (RAMs) for

image classification tasks. Traditional RAMs utilize

recurrent neural networks to sequentially process

glimpses of an image, but recent advances in transformer

architectures suggest potential improvements in modeling

global dependencies between glimpses. A transformer-

based attention mechanism that replaces the RNN

components in RAMs with an encoder-decoder

transformer architecture, where glimpse vectors are

processed through an encoder and the resulting

representations are used as memory for an autoregressive

decoder. Experiments on the Street View House Numbers

(SVHN) dataset demonstrate that while transformer-based

RAMs achieve competitive accuracy (94.81% with optimal

hyperparameters), they require significantly more

computational resources than their RNN counterparts.

Comprehensive ablation studies on patch size, number of

glimpses, learning rates, and hidden dimensions, reveal

that 12 pixel patches and 3 or 6 glimpses provide optimal

performance.

1. Introduction

Convolutional neural networks and vision transformers

have both been very successful in image classification and

object recognition. However, one of the primary

drawbacks of these networks is their linear or quadratic

scaling with image resolution, requiring less than ideal

solutions such as down-sampling images or running on

more powerful hardware.

Semi-sparse image recognition models like Recurrent

Attention Models [1, 2] have taken inspiration from the

way humans perform image recognition tasks. RAMs are

sequence models that at each step process a local view of

the image, called a glimpse, which it then uses to update

an internal hidden state and output the next glimpse

location. The process continues until the model decides

that there are no more objects to process.

The benefit of RAMs is that they scale well with image

resolution. While an initial low-resolution feature map is

required to provide initial context, the full-resolution

image is only processed with sparse glimpses which do

not scale with resolution.

This work aims to improve upon the performance of

RAMs by replacing the RNN with a transformer encoder-

decoder architecture [3]. A key limitation of RNNs is that

they compress glimpse information into fixed-size hidden

states, potentially losing important spatial relationships

between glimpses. Instead of each glimpse being used to

update the hidden state of an RNN, each glimpse will be

processed as a token and passed into a transformer

decoder block. The output token will then be used to

predict the next glimpse location.

2. Related Works

First, [1] introduced RAMs which use a recurrent neural

network to process sequentially sampled glimpses from an

image. Their model demonstrated that attention-based

processing can be more efficient than convolutional

approaches for large images, as computation remains

constant regardless of image size. The RAM architecture

consists of a glimpse network, a recurrent core network, a

location network, and an action network, trained end-to-

end using reinforcement learning.

Second, [2] extended the RAM framework to address

multiple object recognition tasks, showing how attention

mechanisms can effectively transcribe multi-digit

sequences from real-world images. Their approach

highlighted the ability of recurrent attention models to

outperform convolutional networks on cluttered images

while using fewer parameters and less computation.

Third, [3] presented the Transformer architecture that

relies entirely on attention mechanisms without fixed-size

hidden states. Their work showed that self-attention

mechanisms allow modeling of dependencies without

regard to distance in the input sequence, enabling more

effective capture of global relationships.

3. Method

The proposed method, which is called Glimpse

Attention Models (GAM), replaces the RNN in the

original RAM with a transformer decoder architecture.

This fundamental change aims to better capture the

relationships between glimpses through global attention

mechanisms rather than compressed hidden states.

Glimpse Attention Models

Victor Ng
victorng@stanford.edu

2

3.1. Architecture

GAM follows the general structure of RAM, with

similar sub-networks.

Glimpse Network

The glimpse network extracts useful features from the

current glimpse xn at location ln = (xn, yn) in the input

image. For each glimpse, k square patches centered at

location ln are extracted, with each patch having

progressively lower resolution as they move outward.

Following [2], the glimpse network consists of three

convolutional layers followed by a fully connected layer.

Additionally, the location tuple is transformed by an MLP

into the same dimensionality as the processed glimpse.

Then both the “what” and “where” information is

combined via element-wise multiplication.

gn = Gimage(xn) ⊙ Gloc(ln) (1)

Additionally, glimpses are refined by passing them into

a transformer encoder layer, to let glimpses attend to each

other. This allows both glimpses from different parts of

the image to attend to each other.

Context Network

The context network provides features of the entire

input image and is used to determine where to take the

first glimpse. The network takes a down-sampled version

of the entire input image and outputs a fixed length vector

Cn. The goal of the context network is to provide

reasonable ideas of where interesting parts of the network

are. Following [2], it consists of three convolutional

layers.

Transformer Network

Instead of using an RNN to process glimpse

representations sequentially, an autoregressive transformer

encoder-decoder architecture is used (Figure 1).

For any given glimpse, all glimpses taken so far are

passed into a transformer encoder, where each glimpse

vector can attend to each other. Glimpses of different parts

of the image can communicate with each other, enriching

their representations. Critically, the global context from

the context network is not passed into the encoder for

reasons which will be explained later. Only after the

encoder is the global context combined with the enriched

glimpse vectors to be passed as memory.

On the decoder side, all predicted (x,y) locations from

the location network are passed in as queries. The self-

attention layers of the decoder allow the different glimpse

locations to attend to each other, allowing the prediction of

the next location to be conditioned on what areas have

already been visited. There is also cross-attention with the

enriched glimpse vectors and global context, which allows

the network to, from a semantic point of view, determine

where to look next.

Unlike RNNs, which compress all previous glimpse

information into a fixed-size hidden state, the

transformer's self-attention mechanism allows each new

glimpse to directly access and attend to all previous

glimpses, potentially capturing more complex

relationships.

Figure 1: Structure of Transformer encoder-decoder network

3

Location Network

The location network predicts the next glimpse location

based on the most recent location vector from the

transformer decoder. It consists of an MLP that maps the

most recent location vector to the parameters of a normal

distribution. During training, the next location coordinate

tuple ln+1 is sampled from this distribution, while during

inference the mean of the distribution is used directly.

Classification Network

The classification network outputs a class label for the

image based on the glimpses of the image and consists of

an MLP. The MLP takes as input the last glimpse token

from the transformer encoder and outputs the class label.

 The output of the transformer decoder is specifically not

used for classification as its outputs have been attended to

by the initial context vector Cn. The network could learn to

rely on this context vector instead of combining

information from the glimpses. This is undesirable

behavior as the network should learn to depend on its

glimpses for high-quality image information rather than

the low-resolution Cn.

3.2. Forward Pass

For a given image (see Figure 2), the image is first

downsampled to a fixed-resolution and passed into the

Context Network to generate the global context. Next

using the global context, a learned start token for the

glimpse vectors, and a learned start token for the locations,

the Transformer model outputs a location vector. This

location vector is then passed into the location network to

predict the x,y location of the next glimpse. The glimpse is

sampled from the image and passed into the Glimpse

Network, which outputs a glimpse vector. The global

context, accumulated glimpse vectors, and accumulated

locations are then passed into the Transformer model once

again. This cycle repeats until the target number of

glimpses occurs. The number of glimpses is a

hyperparameter.

3.3. Training Algorithm

The model is trained via reinforcement learning due to

the non-differentiable nature of location selection.

Referencing [2], REINFORCE [7] is used to train the

model.

 For each object in the image, the model will be

rewarded with a reward of 1 if the object was properly

classified and a reward of 0 otherwise. When rewarded,

the model will be updated to maximize the probability of

each glimpse being chosen.

4. Dataset

The publicly available single-digit street view house

number (SVHN) dataset [5] consists of 32x32 images of

digits taken from pictures of house numbers. The train set

consists of both the “train” and “extra” datasets, for a total

of 604,388 images. Of these images 10% are set aside as

validation images to select hyperparameters. Testing is

done on the “test” split of 26,032 images.

Figure 3: Example image from SVHN

Figure 2: Logical flow of RAM

4

5. Experiments

5.1. Experiment Setup

Both architectures are implemented from scratch in

PyTorch to ensure fair comparison and precise control

over architectural details. The baseline RNN model

follows the original RAM architecture [2] using LSTM

cells, while the transformer model implements the

encoder-decoder structure described in the methods

section.

All experiments use identical context network

architectures consisting of three convolutional layers with

64, 64, and 128 output filters and kernel sizes of 5, 3, 3

respectively, followed by fully connected layers that

produce 1024-dimensional glimpse representations. The

location network generates 2D coordinates through a two-

layer MLP with tanh activations, while the action network

uses a standard classifier head with softmax output. The

REINFORCE reward baseline is implemented as a

separate network that predicts expected rewards given

glimpse sequences.

Training employs the Adam optimizer with gradient

clipping to ensure stable convergence. A batch size of 128

is used across all experiments and the final models are

trained for 100,000 iterations.

 Performance is measured using top-1 classification

accuracy, measured as the number of images with a

correct prediction divided by the number of images.

5.2. Hyperparameter Optimization

Hyperparameter optimization was conducted across

learning rates, hidden dimensions, glimpse sizes, and

number of glimpses. Hyperparameter optimization is run

for 10,000 steps and the hyperparameter with the best

validation accuracy is used in the final model.

5.3. Learning Rate

Various learning rates are searched over, revealing 1e-4

as the optimal choice. Learning rates adjacent to 1e-4

show promise but either converge too slowly or have a

learning rate that is too high also leading to slower

convergence.

Table 1: Learning Rate vs. Validation Accuracy

Learning Rate Validation Accuracy

1e-2 19.59%

1e-3 71.30%

1e-4 83.54%

1e-5 75.53%

5.4. Hidden Dimension

Hidden dimension analysis demonstrates that 64-

dimensional hidden states provide optimal performance

for our task setup. Interestingly, performance degrades

when the hidden dimension exceeds 256. One hypothesis

is that the model overfits well enough that it memorizes

the training data and can successfully classify training data

even with degenerate glimpse sequences, leading to poor

generalization on the test set.

Table 2: Hidden dimension vs validation accuracy

Hidden Dimension Validation Accuracy

64 84.43%

128 63.8%

256 17.2%

104 17.1 %

5.5. Number of Glimpses

One of the key advantages of attention models is their

ability to trade off compute for performance by changing

the number of glimpses. Both the number of glimpses and

glimpse size are ablated to evaluate this tradeoff.

Patch sizes of 8x8, 12x12, and 16x16 pixels are

evaluated in combination with 3 and 6 glimpses per image.

Increasing patch size and number of glimpses increases

the amount of computation required per image but

theoretically allows the model to see more of the image.

In practice, increasing patch size and number of

glimpses does increase performance. The performance

boost via increase in patch size is most noticeable when

moving from 8x8 to 12x12 patches and saturates after.

Increasing number of glimpses is most noticeable with a

smaller patch size as well, with the largest difference of

2.51% occurring at patch size 8x8.

This is likely because with larger patch sizes, the model

can already view enough of the image to make an accurate

classification. As the patch size decreases, the model sees

less of the image at a time and benefits more from the

increased number of glimpses.

Table 3: Patch size and number of glimpses vs. Validation

Accuracy

 # Glimpses

Patch Size 3 6

8x8 92.24% 94.75%

12x12 96.68% 97.02%

16x16 96.85% 96.08%

5.6. Speed

One tradeoff of Transformers is their more intensive

compute. To compare the throughput of the RNN based

model and the Transformer based model, representative

models with similar validation accuracies are

benchmarked. The RNN is the baseline model mentioned

in the experiment setup and the Transformer model is

5

using a hidden dimension of 64 with one encoder layer

and one decoder layer.

Table 4: Throughput of RAM models on an RTX 3080

Model Images per second

RNN (3 glimpses 8x8 patch) 9088

RNN (6 glimpses 8x8 patch) 6656

Transformer (3 glimpses 8x8 patch) 5248

Transformer (6 glimpses 8x8 patch) 3328

Even with a much lighter model, the Transformer based

RAM is 1.7x slower than the RNN architecture, due to the

quadratic nature of transformer attention.

5.7. Model Comparison and Performance Analysis

The final transformer model is trained with a hidden

dimension of 64, 6 glimpses, and a patch size of 12x12,

representing the best performing hyperparameters in the

search.

The Transformer based RAM achieves a similar

performance to the RNN, with a test accuracy that is

within measurement noise of the RNN baseline.

Both methods successfully learn a policy that explores

the image via glimpses.

One hypothesis is that Transformer’s advantage of

RNNs is their ability to model long sequences without

compression and the ability to model more complex

relationships. The single-digit SVHN task may be too

simple a task for Transformer networks to see a benefit

over RNNs. Tasks like optical character recognition may

be a better target for Transformer RAMs due to their

potentially very long sequences.

Table 5: Test accuracy of RAMs

Model Test

Accuracy

RNN Baseline (6 glimpses 12x12 patch) 94.72%

Transformer RAM (6 glimpse 12x12 patch) 94.81%

Figure 4: Each row represents the glimpse sequence for a 3-glimpse Transformer based RAM. The red squares

represent the sampled patches for that glimpse. Row 1) A correct classification. The model takes a top-down approach

to its glimpses. Row 2) An incorrect classification. The model classified the 6 incorrectly as a 0. The model only

noticed the bottom half of the 6, leading to a misclassification. Row 3) A correct classification. The model is

mistakenly drawn to the bottom-right of the image, likely due to the strong edge on the right side. It corrects its mistake

in the following glimpses and successfully classifies the image as a 3.

6

5.8. Qualitative Analysis of Glimpses

The model generally takes either a top-down or bottom-

up flow when choosing its glimpses. The first row of

Figure 4 shows a typical glimpse trajectory, starting from

the top of the image and incrementally moving downward

to view the points of interest. Since single-digit SVHN

contains centered digits, most movement of the glimpse

occurs in the y direction, as digits are generally taller than

they are wide.

The second row of Figure 4 shows a failure case where

the model misclassifies a 6 as a 0. The glimpse provides

some intuition as to why, as no glimpse ever views the top

portion of the 6, and the bottom half of a 6 is very similar

to a 0. This either indicates that the context network did

not represent the top half of the 6 well or that the

Transformer network did not identify the top-half to be

semantically relevant.

The third row of Figure 4 shows a recovered

classification, where the network mistakenly chooses the

bottom-right of the image as one of the glimpses before

recovering and correctly predicting the image as a 3. The

model was likely drawn to the strong edge on the right

side of the image. It then managed to recover by returning

the remaining glimpses to the actual object in the image.

This demonstrates a robustness of RAM models, where

having multiple glimpses provides redundancy, allowing

the model to make some mistakes while still being able to

classify the image correctly.

6. Conclusion

This work presents a systematic investigation of

transformer architectures for recurrent attention models in

image classification. The encoder-decoder transformer

architecture is competitive with traditional RNN

architectures while maintaining the sequential glimpse-

based processing paradigm that makes attention models

computationally efficient for large images.

The experimental results demonstrate that transformer-

based attention models can achieve competitive

performance on the SVHN dataset, with optimal

configurations reaching 94.81% accuracy using 6 glimpses

of 12-pixel patches. However, this comes at significant

computational cost, with inference times 1.7x higher than

equivalent RNN models due to the quadratic scaling of

attention mechanisms.

Several key insights emerge from the evaluation. First,

glimpse count optimization reveals diminishing returns

beyond 3 glimpses, suggesting that effective attention

strategies can be learned with relatively few sequential

observations. Second, patch size selection noticeably

impacts performance, with 12-pixel patches providing

optimal information density for digit recognition tasks.

Future work could explore several promising directions.

Investigating more complex visual reasoning tasks that

better exploit transformer capabilities could reveal

scenarios where the computational overhead is justified by

performance gains. Additionally, investigating efficient

attention mechanisms that reduce the quadratic scaling

while preserving global modeling capabilities remains an

important research challenge.

7. Contributions & Acknowledgements

All code, models, experiments, and reports were

created, trained, and run by me. I had no collaborators, and

this project was done solely for CS231n.

The baseline RAM model and training was

reimplemented from scratch and based on the code from

[6]. Additionally, code for positional encoding and

Transformer data flow was referenced from CS231n

Assignment 3.

References

[1] V. Mnih, N. Heess, A. Graves, K. Kavukcuoglu, and G.

Deepmind, “Recurrent Models of Visual Attention.”, 2014.

[2] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple Object

Recognition with Visual Attention”, 2015.

[3] A. Vaswani et al., “Attention Is All You Need,” 2017.

[4] A. Paszke et al., “PyTorch: An Imperative Style, High-

Performance Deep Learning Library,” CoRR, vol.

abs/1912.01703, 2019

[5] Yuval Netzer, Tao Wang, Adam Coates, Alessandro

Bissacco, Bo Wu, Andrew Y. Ng, Reading Digits in Natural

Images with Unsupervised Feature Learning NIPS

Workshop on Deep Learning and Unsupervised Feature

Learning 2011

[6] T. Tianyu, Visual Attention Model [Source code] 2017

https://github.com/tianyu-tristan/Visual-Attention-

Model/tree/master?tab=readme-ov-file

[7] R. J. Williams, “Simple Statistical Gradient-Following

Algorithms for Connectionist Reinforcement Learning,”

Machine Learning, vol. 8, pp. 229–256, 2004

https://github.com/tianyu-tristan/Visual-Attention-Model/tree/master?tab=readme-ov-file
https://github.com/tianyu-tristan/Visual-Attention-Model/tree/master?tab=readme-ov-file

