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Abstract

We study the problem of semi-supervised learning in vi-
sion tasks with complex and heterogeneous output spaces.
Standard methods typically assume aligned input-output
structures or require dense supervision, limiting their appli-
cability in cross-modal settings with sparse labels. Bridged
Clustering (BC), a recently proposed framework, addresses
this by independently clustering inputs and outputs, then
using a small labeled set to learn a sparse alignment—or
”bridge”—between the two spaces. In this work, we bench-
mark BC on two vision tasks: year prediction in WikiArt and
ingredient detection in Food-101, demonstrating strong per-
formance under minimal supervision. We further propose
two extensions: Softmax-BC, which introduces soft label as-
signments, and GNN-BC, which propagates labels through
an input-space graph to improve robustness. Across both
tasks, GNN-BC consistently outperforms state-of-the-art
baselines and BC variants, particularly in low-supervision
regimes. Our results suggest that exploiting latent output
structure via bridging and graph-based smoothing offers a
powerful approach to semi-supervised learning in complex
domains.

1. Introduction

Many real-world vision tasks suffer from prohibitively
high labeling costs due to the need for expert annotations,
expensive data collection, or specialized equipment. Yet,
these domains often possess large amounts of unlabeled
data.

Semi-supervised learning (SSL) attempts to bridge the
gap between difficult-to-obtain labeled data and abundant
unlabeled data by using structure in the input space to im-
prove learning. Most SSL approaches focus on organizing
or augmenting the input feature space so that unlabeled
inputs can help shape a more robust representation of the
data distribution [12].

However, many tasks have complex or sparse output
spaces that are poorly represented by a few available labeled
examples. For instance, the label space in historical artwork

classification requires nuanced stylistic categories. In such
cases, unlabeled outputs exist in abundance (e.g., years, art
movements, etc.) but are rarely incorporated into existing
SSL methods. This motivates an important extension to
standard SSL: leveraging structure in the output space as
well.

In a previous project, members of the Vitercik Lab pro-
posed the Bridged Clustering (BC) algorithm, which inde-
pendently clusters the input and output domains and uses
a small set of labeled examples to learn a sparse align-
ment—or “bridge”—between the clusters. By clustering
both inputs and outputs and learning how they align using
only a few labeled examples, BC hopes to amplify the sig-
nal of sparse labels and better generalize across complex
data distributions. BC is especially appealing for applica-
tion in cross-modal prediction tasks because they typically
do not require dense alignment between input and output
clusters X and Y ; instead, assuming that both spaces share
latent structure.

While promising, BC has only been evaluated on a small
toy dataset, against simple baselines such as K-Nearest
Neighbors. In this project, we aim to benchmark and ex-
tend the BC algorithm to better understand its potential in
semi-supervised vision tasks.

We evaluate BC across two different semi-supervised vi-
sion tasks: year prediction in WikiArt (scalar regression),
and ingredient detection in food images (multi-label classi-
fication). These tasks differ in output structure and supervi-
sion sparsity, offering robust benchmarks for BC.

To enhance Bridged Clustering (BC), we propose sev-
eral extensions that increase its flexibility and performance.
Drawing inspiration from recent advances in graph-based
SSL, we introduce two directions: cluster-aware smooth-
ing using Graph Neural Networks (GNNs) and soft-label
bridging. These extensions aim to improve predictive ac-
curacy, particularly in cases involving ambiguous or imbal-
anced clusters.

2. Related Works
Most SSL methods in computer vision concentrate on

shaping the input space using unlabeled data. Consistency-
based approaches like Temporal Ensembling [7] and
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Mean Teacher [11] encourage models to produce stable
predictions under perturbations or temporal smoothing.
Graph-based methods such as Laplacian Regularized Least
Squares (LapRLS) [15] and GNNs [8] propagate labels
across a learned data manifold, encouraging local smooth-
ness and cluster coherence.

These methods assume strong alignment between inputs
and outputs. Therefore, they are less effective in scenar-
ios where labels are sparse or structurally different from
the input domain, such as in cross-modal prediction. For
such settings, methods like Balanced K-Means (BKM) [2],
RankUp [4], and Unsupervised Clustering via Variational
Manifold Embedding (UCVME) [3] improve generaliza-
tion in settings by preserving the geometric or relational
properties of the data, including clustering balance, rank-
ing order, and manifold structure respectively. Twin Sup-
port Vector Regression (TSVR) [5] and Transductive Near-
est Neighbor Regression (TNNR)[13] further extend this
idea through transductive regimes where they excel at lever-
aging limited labeled data to infer smooth predictions over
the entire dataset by learning dual regression hyperplanes in
a semi-supervised, transductive setting and propagation of
continuous labels through a nearest-neighbors graph using a
small labeled set. Still, these approaches suffer in situations
where the inputs and outputs differ significantly in modality
or dimensionality.

On the other hand, BC is well-suited to these transduc-
tive scenarios. By clustering inputs and outputs separately
and learning a sparse alignment via a small labeled set, BC
sidesteps the need for aligned representations or dense su-
pervision. Rather than predicting exact labels, BC assigns
an input to a cluster, maps it to an output cluster using the
learned bridge, and returns the centroid of the output cluster
as the prediction.

Additionally, recent work has shown that GNNs can ef-
fectively propagate labels and smooth out cluster assign-
ments across data manifolds [6]. We build on this insight to
extend BC with soft bridging and GNN-based smoothing,
allowing for more flexible cluster assignment and improved
handling of noise and ambiguity in real-world datasets.

3. Problem Statement

Let {(xi, yi)}ni=1 be a dataset where the majority of data
is unlabeled, and a small subset S ⊂ {(xi, yi)} is labeled.
Bridged Clustering assumes that both the input space X and
the output space Y admit latent cluster structure.

The core objective is to leverage this structure by:

1. Clustering the input and output spaces independently
using an unsupervised algorithm.

2. Using the small supervised set S to learn a bridge—a
sparse alignment—between input and output clusters.

3. Predicting outputs for unlabeled inputs by mapping
their cluster assignments in the input space to cor-
responding output clusters, and using the associated
cluster centroids as predictions.

We consider both hard and soft variants of this frame-
work, which differ in how cluster assignments and predic-
tions are computed. These variants are described in detail
in the following section.

4. Datasets

We evaluate Bridged Clustering across two datasets
spanning scalar regression and multi-label classification.

WikiArt. The WikiArt dataset contains over 80,000
paintings sourced from WikiArt.org, annotated with meta-
data including creation year and artistic style [10]. The
dataset spans works by 1, 119 artists and is categorized into
27 distinct artistic styles. We treat the year as a scalar re-
gression target and standardize it across the dataset. To in-
duce meaningful cluster structure, we filter the original set
of images to include only those corresponding to 2 to 6 ran-
domly selected artistic styles per trial. The assumption is
that artistic style serves as a latent factor shared between the
input space (images) and the output space (year), allowing
Bridged Clustering to discover structure even without ex-
plicit supervision over style. See Figure 1 for an example
of an image in WikiArt dataset.

Figure 1. Example WikiArt image.

“Food-101”: Ingredient Extraction. This dataset con-
sists of over 4, 000 food images annotated with ingredient
lists [9]. We binarize each list into a multi-hot vector over
the 1,095 most frequent ingredients and frame the task as
multi-label prediction. In each trial, we select images from
2 to 6 distinct food categories with the goal of inducing la-
tent cluster structure shared between the input space (im-
ages) and the output space (ingredients). The assumption
is that cuisine acts as a common underlying factor that or-
ganizes both the visual features and the ingredient distribu-
tions, enabling Bridged Clustering to align input and output
clusters without access to category labels. See Figure 2 for
an example of an image in the Food-101 dataset.



Figure 2. Example “Food-101” cuisine image.

Preprocessing. Images from both datasets were resized
to 224 × 224 pixels and z-score normalized using channel-
wise means of [0.486, 0.456, 0.406] and standard deviations
of [0.229, 0.224, 0.225].

5. Method
We implement the Bridged Clustering algorithm as orig-

inally proposed by Ye et al. [14] and propose novel vari-
ants that improve cluster assignment through label prop-
agation, voting-based refinement, and task-specific input-
output adaptations.

The algorithm consists of three main stages, which we
detail over the following subsections.

5.1. Simulating the Bridged Clustering Setting

To reflect the practical conditions Bridged Cluster-
ing is designed for—where labeled input-output pairs are
scarce—we partition each our dataset into three disjoint
subsets: a small supervised set S, an unlabeled input set
Xunlabeled, and an unlabeled output set Yunlabeled. The su-
pervised set includes just 1, 3, 5, or 10 labeled examples
per output cluster, simulating the extremely low-resource
regimes that are common in vision-based semi-supervised
learning.

The remaining data is split between Xunlabeled and
Yunlabeled. The specific division is an ablated hyperparam-
eter that we will discuss in the Results section. This dis-
joint sampling allows us to determine whether a meaning-
ful alignment can be learned between latent input and out-
put structures even when they are not observed together. A
schematic overview of this partitioning is shown in Figure
3, where “Unsupervised Set 1” corresponds to Xunlabeled and
“Unsupervised Set 2” to Yunlabeled.

5.2. Clustering and Representation

After splitting the dataset, we use a pretrained ResNet-50
model to produce 2048-dimensional input feature vectors
xi from the entries in Xunlabeled. Output labels yi ∈ Yunlabeled
are either scalar values (WikiArt) or 1095-dimensional bi-
nary vectors (Food-101). To reduce computation cost dur-
ing clustering in Food-101, we apply a Gaussian random
projection to the 1095-dimensional binary label vectors, re-
ducing them to 128-dimensional real-valued vectors. We

Figure 3. Dataset subdivision for Bridged Clustering simulation

cluster the input space X and output space Y independently
using K-Means with k clusters. Let:

• CX : X → {1, . . . , k} denote input cluster assign-
ments,

• CY : Y → {1, . . . , k} denote output cluster assign-
ments.

5.3. Bridge Learning

Using the small supervised set S = {(xi, yi)}si=1, we es-
timate a mapping A : {1, . . . , k} → {1, . . . , k} from input
to output clusters.

Hard Alignment with Majority Voting. In the hard
alignment setting, we define A using majority voting [1]:

A(c) = argmax
c′

∑
(xi,yi)∈S

1{CX(xi) = c and CY (yi) = c′}

Then, we define ŷ(xj) for each test input xj as the cen-
troid of the mapped output cluster:

ŷ(xj) = µA(CX(xj))

where µc′ denotes the centroid of output cluster c′ in the
output space.

Hard Alignment with Hungarian Voting. We define a
”co-occurrence” matrix:

Mc,c′ =
∑

(xi,yi)∈S

1{CX(xi) = c and CY (yi) = c′}

for c, c′ = 1, . . . , k.
Then, AHungarian is the mapping that maximizes:

AHungarian = argmax
π

∑
(xi,yi)∈S

Mc,π(c)

where π is a permutation of {1, . . . , k} → {1, . . . , k}.



The above is typically solved by applying the Hungarian
(e.g., linear sum assignment) algorithm to the cost matrix
−M . Once solved, we define our prediction for each test
input xj as:

ŷHungarian(xj) = µAHungarian
(CX(xj))

Softmax Alignment. Note: for notational clarity, the
following alignments use the mapping A and correspond-
ing predictions ŷ obtained via hard alignment with majority
voting. However, these can be readily substituted with those
from hard alignment using Hungarian voting, without loss
of generality.

We propose a soft-label variant where each input softly
votes across output clusters based on distance-weighted
similarity, and predictions are computed as a weighted av-
erage of output centroids. This approach is motivated by
the intuition that some inputs may lie near the boundary be-
tween multiple clusters, and a hard assignment may discard
useful uncertainty information. By incorporating a soft dis-
tribution over clusters, we hope to produce smoother and
potentially more robust predictions in ambiguous or noisy
regions of the input space.

First, we compute the hard-aligned prediction from the
original Bridged Clustering algorithm:

ŷ(xj) = µA(CX(xj))

Next, we define an inverse-distance softmax over all k out-
put centroids:

pi(xj) =
exp (−∥ŷ(xj)− µi∥2)∑k
ℓ=1 exp (−∥ŷ(xj)− µℓ∥2)

for i = 1, . . . , k

Finally, we compute the smoothed prediction as the ex-
pected output under this distribution:

ŷsoftmax
j =

k∑
i=1

pi(xj) · µi

While conceptually appealing, this approach underper-
forms compared to hard alignment in low-supervision set-
tings. We hypothesize that averaging across uncertain clus-
ter assignments causes predictions to collapse toward the
mean, obscuring fine-grained structure. This motivates our
GNN-based extension, which retains local structure without
excessive smoothing.

GNN Alignment. To incorporate geometric structure in
the input space, we construct a k-nearest-neighbor (k-NN)
graph over the input features X ∈ RN×Dx , where:

• N is the number of input samples (from Xunlabeled ∪S),

• Dx = 2048 is the dimensionality of the input features
(e.g., ResNet-50 embeddings),

• X = [x1, . . . , xN ]⊤ is the matrix of input embeddings.

We define an adjacency matrix A ∈ {0, 1}N×N for
the k-NN graph and compute its symmetrically normalized
form Ã.

A three-layer Graph Convolutional Network (GCN) is
then trained to predict output cluster assignments on the su-
pervised examples. The GCN operates as follows:

H(1) = ReLU(ÃXW (0)) (1)

H(2) = ReLU(ÃH(1)W (1)) (2)

P = softmax(ÃH(2)W (2)) ∈ RN×k (3)

where:

• W (0) ∈ RDx×d, W (1) ∈ Rd×d, and W (2) ∈ Rd×k are
learnable weight matrices,

• d is the hidden dimensionality of the intermediate
GCN layer,

• Pi = [pi1, . . . , pik] denotes the predicted distribution
over output clusters for input xi.

The model is trained using cross-entropy loss on the su-
pervised subset S, where ground-truth output cluster labels
are given by CY (yi).

At inference time, the prediction for input xi is computed
as the expectation over output centroids:

ŷGNN(xi) =

k∑
j=1

pij · µj

This GNN-Bridge variant allows the model to smooth
noisy or ambiguous input assignments by propagating su-
pervision through the input graph, while still collapsing to
hard-aligned behavior when confident.

6. Experiments

Experimental Goals. Our experiments are designed to
evaluate the performance of Bridged Clustering (BC) un-
der low-supervision regimes and to understand how align-
ment and smoothing strategies affect its predictive accuracy.
We compare BC against a range of supervised and semi-
supervised baselines, investigate the effect of different vot-
ing schemes for cluster alignment, and assess whether our
proposed extensions—Softmax-BC and GNN-BC—offer
improvements, particularly in noisy or ambiguous cluster
settings. We also perform a targeted hyperparameter search
to optimize the GNN variant and analyze how model be-
havior changes across cluster granularity and supervision
levels.



Experimental Setup. We evaluate each task across clus-
ter counts k ∈ {2, 3, 4, 5, 6}, with additional results for
k = 8, 10 included in the Appendix, which support similar
conclusions. Since cluster boundaries are unsupervised and
may not align with semantic classes (e.g., artistic styles or
cuisines), varying k allows us to test robustness to different
structural assumptions. Lower values of k capture coarse
groupings (e.g., broad historical periods or major ingredi-
ent types), while higher values introduce finer distinctions.
For each k, we construct a dataset by randomly sampling k
classes from the full label set (25 in WikiArt, 101 in Food-
101), ensuring diverse class combinations across trials. We
treat k = 6 as a meaningful upper bound in our main exper-
iments, as it often includes semantically overlapping or vi-
sually similar categories—such as Renaissance substyles or
regional cuisines—that pose greater alignment challenges
without introducing excessive fragmentation.

Supervision is limited to 1, 3, 5, or 10 labeled examples
per output cluster, simulating realistic low-resource condi-
tions where annotations are costly or sparse. This reflects
many domain-specific applications in which generalization
from minimal labeled data is required.

We run each configuration (i.e., a combination of k, su-
pervision level, and randomly sampled data subset) is over
100 trials for stability.

Baselines. We compare Bridged Clustering and our pro-
posed variants against seven state-of-the-art baselines:
K-Nearest Neighbors (KNN), XGBoost, Mean Teacher,
Laplacian Regularized Least Squares (LapRLS), Trans-
ductive Support Vector Regression (TSVR), Uncertainty-
Consistent Variational Model Ensembling (UCVME), and
RankUp. Each model is configured for its respective out-
put domain (scalar or multi-label) and trained solely on the
supervised subset.

Hyperparameter Ablation. To assess the sensitivity of
Bridged Clustering (BC) and its extensions, we ablate two
core components: the voting scheme for input-output align-
ment, and the hyperparameters for GNN-BC.

Voting Scheme. We compare majority voting (many-
to-one cluster mapping) with Hungarian voting (one-to-one
assignment) to evaluate the effect of alignment granularity.
Both schemes are tested across datasets, supervision levels,
and cluster counts; performance differences are discussed
in the Results section.

GNN-BC Tuning. Guided by prior work in semi-
supervised graph learning [6], we sweep learning rates from
1e−5 to 9e−3, test weight decay values 1e−5 and 1e−4, and
ablate hidden dimensions {64, 128, 256, 512}, with 128 and
256 commonly used in practice. We vary the k-NN graph
size over k ∈ [1, 50] and cap training at 1000 epochs for

convergence. The best setup—used in all GNN-BC evalu-
ations—uses the Adam optimizer, learning rate 3 × 10−3,
weight decay 1×10−5, hidden dimension 128, k = 22, and
47 training epochs.

We evaluate each combination of hyperparameters using
an 80/20 split of the supervised set into train and validation
data.

Evaluation Metric. We use mean absolute error (MAE)
as our primary metric due to its interpretability across both
scalar and multi-label output spaces, and its robustness to
outliers. For each dataset and configuration, we report the
average MAE across 100 trials. Note that the MAEs are not
directly comparable between tasks: WikiArt involves year
prediction, where errors can span centuries, while Food-101
uses a 0–1 multi-hot vector over 1,095 ingredients.

Qualitative and Quantitative Analysis. In addition to
MAE, we present cluster visualizations (Figures 7–9) and
task-specific error breakdowns. Common failure modes,
such as cluster collapse in Softmax-BC or over-smoothing
in GNN-BC, are discussed in the Results section.

7. Results and Analysis
We report results for both WikiArt (scalar regression)

and Food-101 (multi-label classification) tasks. For each
dataset, we compare Bridged Clustering and its variants
(Softmax-BC, GNN-BC) against a suite of baselines across
multiple cluster settings and supervision levels. Unless
otherwise noted, results represent the mean absolute error
(MAE), averaged across 100 trials.

7.1. WikiArt: Year Prediction

BC vs Baselines. BC consistently outperforms classical
baselines such as KNN and XGBoost across all cluster
and supervision settings (Figure 4). These baselines fail to
benefit meaningfully from added supervision, especially in
sparse regimes, likely due to their inability to leverage un-
labeled data. In contrast, BC uses the latent alignment be-
tween input and output clusters to generalize from minimal
labeled data.

GNN-BC and Softmax-BC. GNN-BC improves upon
BC in most settings, with performance gains increasing as
supervision increases. Notably, statistical significance (Fig-
ure 5) becomes stronger at 3, 5, and 10 samples per cluster.
We attribute this to the fact that with more labeled anchors,
GNN-BC can construct more reliable neighborhood graphs,
enabling effective label propagation across structurally sim-
ilar but unlabeled points.

At extremely low supervision (e.g., 1 sample/cluster),
GNN-BC performs comparably or slightly worse than BC.



Figure 4. Line plots of MAE vs. supervision level for each method across different cluster sizes k. Each point reflects the average over 100
trials.

Figure 5. MAE comparison between GNN-BC and BC (labeled BKM) across cluster sizes k ∈ {2, 3, 4, 5, 6} on WikiArt. Statistical
significance is indicated by paired t-tests over 100 trials: †: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

We believe this is due to oversmoothing: in the absence
of sufficient labeled anchors, label information diffuses
across the graph indiscriminately, which in turn reduces

the model’s ability to preserve class-specific distinctions.
This effect is more pronounced when graphs contain noisy
or loosely connected components, which misalign input-



output mappings and lead to prediction drift.
Softmax-BC performs worst across all settings. Its

MAE curves are flat and consistently higher than BC and
GNN-BC. We attribute this to softmax collapse, where soft
weighting over cluster centers causes predictions to grav-
itate toward the global mean. Our target (year) spans a
wide numeric range, and the unnormalized L1 distances be-
tween cluster centroids are often large in magnitude, lead-
ing to overly sharp or flat softmax distributions depending
on scale. A potential remedy is to normalize distances prior
to softmax, which would equalize the influence of each cen-
troid and reduce collapse.

Effect of Cluster Size. All methods improve with in-
creasing supervision, but show diminishing returns beyond
5 samples per cluster. GNN-BC benefits the most from ad-
ditional supervision, particularly at k = 3 to 5, where graph
quality and label coverage reach a sweet spot. Too few clus-
ters (e.g., k = 2) result in overly coarse partitions, limiting
the resolution of learned structure. Too many clusters (e.g.,
k = 6) can fragment the input space, leading to unstable
bridges and noisier predictions. Overall, k = 4 and k = 5
offer the best trade-off between semantic granularity and
alignment stability.

Summary. BC and its variants outperform all baselines
on WikiArt, with GNN-BC achieving the best results when
given sufficient supervision. Its gains stem from effective
structural smoothing and graph-based propagation. In con-
trast, Softmax-BC fails to leverage supervision or structure
due to averaging effects that obscure fine-grained targets.
These results highlight the importance of explicit structure-
preserving mechanisms in sparse regression tasks.

7.2. Food-101: Cuisine Classification

Voting Strategy. We compare majority voting and Hun-
garian voting across 10 trials per cluster-supervision set-
ting. Majority voting consistently outperforms, likely be-
cause it permits many-to-one mappings between input and
output clusters. This flexibility is crucial when multiple vi-
sual clusters correspond to a single cuisine label, which is
common in noisy real-world data.

BC vs Baselines. As shown in Figure 6, BC consistently
outperforms KNN and LapRLS across all configurations.
Unlike the baselines, which rely solely on the limited la-
beled set, BC leverages unlabeled data through structural
alignment. This results in more robust generalization, es-
pecially under sparse supervision. The closeness in perfor-
mance between BC and its variants also suggests that the
learned bridge captures strong semantic alignment between
input clusters and output cuisines.

GNN-BC and Softmax-BC. GNN-BC performs simi-
larly to BC but generally underperforms slightly. Its depen-
dence on a KNN graph makes it vulnerable to misalignment
when input features do not reflect semantic similarity. Ad-
ditionally, GNN-BC requires more labeled anchors to prop-
agate meaningful signals; with limited supervision, it fails
to learn stable weights, leading to poor generalization.

Softmax-BC trails both BC and GNN-BC in all settings.
Because it computes a weighted average of output cluster
centroids, even small affinities to incorrect clusters drag pre-
dictions away from the true label. Without mechanisms for
denoising or correction, it struggles to maintain accuracy in
the presence of ambiguity or noise.

Effect of Cluster Size. As cluster size increases, BC and
its variants continue to outperform the baselines, especially
with more supervision. The bridge becomes more precise
with additional labels, enabling better alignment between
input features and output classes. In contrast, the baselines
remain heavily constrained by their limited access to super-
vision.

Failure Modes. At k = 2, all methods perform similarly
due to the simplicity of the clustering problem. As super-
vision increases, BC and its variants start to significantly
outperform the baselines. This indicates that the bridge ben-
efits most when the problem has moderate complexity and
sufficient labels to stabilize alignment.

7.3. Cross-Task Comparison

The WikiArt and Food-101 results highlight key differ-
ences in how each BC variant behaves under different su-
pervision and label structure conditions:

GNN excels on WikiArt due to the smooth, continuous
nature of the year variable. Local neighborhood structure
in the learned graph provides meaningful signals, enabling
effective label propagation—especially as supervision in-
creases. The benefits of GNN-BC grow with more labeled
anchors, which allow it to correct for noise and avoid over-
smoothing.

GNN-BC underperforms slightly on Food-101, where
the output space is discrete and multi-label. Graph propaga-
tion is less effective because local neighbors may belong to
different classes (e.g., visually similar dishes with distinct
ingredients), leading to noise amplification. Furthermore,
the supervision sparsity makes it difficult for GNN-BC to
learn appropriate edge weights.

Softmax-BC underperforms on both tasks. Its averag-
ing mechanism blurs class boundaries in classification and
pulls predictions toward the mean in regression. This ef-
fect is especially problematic in WikiArt, where the wide
numeric range of the year variable interacts poorly with un-
scaled softmax logits. Even in Food-101, where outputs are



categorical, Softmax-BC cannot denoise or correct errors
introduced by ambiguous input features.

Vanilla BC is the most consistent. It performs compet-
itively across both datasets and often outperforms GNN-
BC when supervision is very low. Its voting-based bridge
sidesteps issues of noisy graph construction and avoids col-
lapse from over-averaging.

Interestingly, on WikiArt, the NMI between image and
year clusters remains stable at approximately 0.35 across
all cluster sizes and supervision levels. A example of the
clustering quality is shown in Figure 8. This suggests a rel-
atively consistent but modest alignment between the visual
representation of style (input) and temporal annotation (out-
put). Despite this modest NMI, Bridged Clustering methods
still achieve strong performance—particularly GNN-BC—
by leveraging the local smoothness of the continuous year
variable.

By contrast, Food-101 exhibits highly variable align-
ment between input (image) and output (ingredient) feature
spaces, as shown in Figures 7 and 9. Some cuisines, like
Red Velvet Cake or Caprese Salad (Figure 7), show strong
cluster consistency between the two spaces, suggesting that
GNN-based propagation could be effective in these cases.
However, others, like Pizza and Sashimi (Figure 9), display
poor alignment—with samples scattered across clusters in
one space but concentrated in another.

This inconsistency likely degrades the overall perfor-
mance of GNN-BC: while some regions of the graph may
benefit from smooth label diffusion, others propagate con-
flicting signals, especially under sparse supervision. We
think that although GNN-BC can exploit strong local struc-
ture in well-aligned regions, its performance is limited by
the variability and unreliability of such structure across
the dataset. In this sense, the graph becomes an incon-
sistent medium—sometimes helpful, but often harmful—
ultimately making GNN-BC less robust for Food-101.

8. Conclusion
This work benchmarks and extends the Bridged Clus-

tering (BC) algorithm for semi-supervised learning in vi-
sion tasks with complex output spaces. Our experiments
across scalar regression (WikiArt) and multi-label classifi-
cation (Food-101) demonstrate that BC—and particularly
our GNN-augmented variant—can outperform or match a
range of strong baselines under extremely low supervision.

We find that majority voting provides more robust clus-
ter alignments than Hungarian voting, likely due to its flex-
ibility in supporting many-to-one mappings between input
and output clusters. Although Softmax-BC is conceptually
appealing for its ability to represent uncertainty, it under-
performs due to prediction collapse in sparse supervision
regimes. In contrast, GNN-BC consistently improves per-
formance by leveraging local neighborhood structure in the

input space to propagate labels across ambiguous or noisy
regions.

Overall, these results suggest that incorporating latent
output structure can meaningfully enhance predictive accu-
racy in low-label regimes. The BC framework’s modular
design and ability to align cross-modal spaces make it espe-
cially well-suited for tasks where input and output modali-
ties differ in nature or dimensionality.

Future Directions. Given the success of cluster-level
bridging, future work could explore incorporating proba-
bilistic or Bayesian formulations of the bridge itself. This
would allow the model to express uncertainty over input-
output mappings, which may be especially beneficial in set-
tings with high output ambiguity or weak alignment—such
as multi-label tasks like Food-101. Learning a distribution
over possible bridges, rather than committing to a single de-
terministic mapping, could enable more robust inference in
regions where supervision is sparse or conflicting.
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Figure 7. Clustering quality for 3 clusters, shown by cluster assign-
ment consistency for different cuisines, in the food image feature
space (X) and the ingredients output feature space(Y). RV is red
velvet cake, CC is chicken curry, and CS is caprese salad.

Figure 8. Clustering quality for 3 clusters for WikiArt.

Figure 9. Clustering quality for 3 clusters, shown by cluster assign-
ment consistency for different cuisines, in the food image feature
space (X) and the ingredients output feature space(Y). PZ is pizza,
RM is ramen, and SM is sashimi.


