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Abstract

Understanding of the indoor scene benefits from combin-
ing the appearance of a frame with volumetric geometry.
We first benchmark with off the shelf 2D segmentaion mod-
els - DeeplabV3+ and Segformer-B0 in a Zero-Shot setting
on ScanNet Data, then refine one of the models by incor-
porating depth as an additional input channel—effectively
leveraging 3D geometry cues to improve per-frame segmen-
tation. Finally, we fuse all RGB-D frames into a volumetric
(3D) representation and train a 3D U-Net to predict voxel-
level semantic labels, comparing the performance when
using either ground-truth sensor depth or self-calibrated
depth from MASt3R. Our experiments reveal how the addi-
tion of geometric depth information can boost segmentation
accuracy in 2D.

1. Introduction

The Indoor Scene understanding is a fundamental prob-
lem in the computer vision with latest applications in the
robotics and augmented reality. Since the introduction of
RGB-D sensors, such as Microsoft Kinect, the capture and
analysis of indoor 3D scenes [18] has gained significant at-
tention, opening up a wider range of details. However, the
higher level of semantic understanding in cluttered indoor
environments remains challenging. A key insight from re-
cent research is that combining 2D appearance cues with
3D geometric information can substantially enhance the in-
terpretation of the scene. Depth data provide complemen-
tary shape information that helps in distinguishing objects
and surfaces, addressing the limitation of RGB based vision
[4]. In particular, geometric depth cues enhance the delin-
eation of object boundaries and remain robust under con-
ditions such as low illumination or similar textures where
RGB-based methods struggle.

Over the last 10 years, we have seen significant ad-
vances in semantic segmentation driven by large-scale 2D
benchmarks like Cityscapes [20] and ADE20K [27]. The

state of the art CNN architectures like DeepLabV3+ have
achieved higher pixel-level accuracy by combining multi-
scale contextual features with the encoder-decoder enhance-
ment [25]. Transformer-based models such as Segformer
[27] further improve performance with efficient attention
blocks. Models trained on generic 2D datasets often face
the issue of domain gaps compared to indoor scenes. Hence,
RGB-D datasets like ScanNet [2] have gained traction,
which contains approximately 1500 scans of various indoor
environments. This data set comprises the RGB, depth,
pose, intrinsics, and semantic information about the partic-
ular scene.

In this project, we explore how geometric depth cues
and volumetric representations can enhance the semantic
understanding of Indoor Scenes. We benchmarked off-
the shelf DeepLabV3+ and Segformer-B0 on ScanNet in
a Zero-Shot setting and found that DeepLabV3 + outper-
formed Segformer-B0 in multiple apartment scenes. The
fine-tuning segformer showed an improvement in the seg-
mentation quality, although the validation data leak affected
the metric reliability. To asses the role of geometry, we
comapared the segmentation performance using the ground
truth depth from ScanNet and self-calibrated depth from
MASt3R [7]. Despite the minimal accuracy gaps, MASt3R
showed the competitive pose and depth estimation, and 3D
segmentation with voxel-level labeling using a 3D U-Net
architecture demonstrated that incorporating depth signif-
icantly improves metrics such as mIoU, Dice, and Preci-
sion. Our findings highlight the value depth-aware repre-
sentations in indoor scene understanding and MASt3R’s vi-
ability for calibration-free reconstruction pipelines.

2. Background and Related Work

Our work builds on the idea of combining the appear-
ance of geometry for scene segmentation, starting from per-
frame RGB segmentation and extending into the volumet-
ric domain. We first benchmark the off-the shelf 2D se-
mantic segmentation models like DeepLabv3+ [25] and
Segformer-B0 [27] on the ScanNet [2]dataset. The models
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provide insight into how well 2D pretrained networks gen-
eralize to the indoor environments. Next, we enhance one
of these models by introducing depth as an additional input
channel to create a RGB-D segmentation network, leverag-
ing 3D cues at the image frame level. Similar efforts have
shown the depth encoding improves object boundary seg-
mentation [4].

To move beyond the predictions per image frame, we
construct a global volumetric representation by fusing
RGB-D frames. We adopt the 3D U-Net [21] architec-
ture to predict voxel-level semantic labels in this volumetric
space. This allows the network to leverage spatial continu-
ity and context beyond individual frames. Prior work such
as SemanticFusion [8], ElasticFusion [12] and Panoptic-
Fusion [9] demonstrated the importance of fusing appear-
ance and geometry for real-time 3D scene mapping. We
also compare the impact of different depth inputs like sen-
sor ground truth from ScanNet Dataset, estimated depth
from the MASt3R [7] pipeline to understand how the depth
quality affects the segmentation performance. Our exper-
iments show the accurate geometric information not only
improves per-frame results but also enhances the consis-
tency and completeness of 3D semantic maps.

3. Methods
In this work, several segmentation experiments were

conducted to investigate the semantics of indoor scenes.
First, we evaluated an off-the-shelf DeepLabV3+ model to
gauge the effectiveness of a purely 2D segmentation ap-
proach compared to our volumetric methods. Then we went
ahead to evaluate the 2D segmentation on the Segformer-B0
which is a transformer-based model.

Second, we trained a standard 3D U-Net on fused volu-
metric data using both ground-truth and MASt3R-predicted
depth to compare the semantic accuracy with and without
explicit calibration, providing a direct performance refer-
ence for our integrated geometry semantic pipeline.

3.1. 2D Segmentation - Zero-shot

We employed an off-the shelf DeepLabV3+ model [25],
originally trained on the COCO dataset [26], for 2D seman-
tic segmentation on ScanNet [2] in a zero shot manner. Each
input was a single 512 × 512 RGB image, and the model
produced a 2D segmentation mask on 41 labeled ScanNet
Categories. We chose DeepLabV3+ for its strong perfor-
mance in large-scale segmentation tasks and its coverage of
diverse object categories, many of which overlap with Scan-
Net’s labeled class categories.

We applied the ScanNet dataset to a Segformer-B0,
which is a lightweight transformer-based encoder-decoder
model pre-trained on the ADE20K [27] dataset. We ran
it directly on each ScanNet RGB frame to produce the 2D
mask over the 41 ScanNet classes. The input RGB image is

given in the size of 512 × 512 using the SegformerImage-
Processor function.The logits we calculated are upsampled
to 512 × 512,so that the arg-max yields a label map per
pixel in the 41-class space of ScanNet. We also evaluated
the fine-tuning of Segformer-B0 on the ScanNet dataset by
tweaking the hyperparameters.

3.2. 2D Segmentation - Finetuning

We began with a pre-trained SegFormer-B0 model, orig-
inally trained on the ADE20K dataset for three-channel
(RGB) segmentation across 150 classes. We formed a four-
channel input (R, G, B, Depth) by concatenating the depth
map to the RGB data. Because the original SegFormer-B0
backbone handles only three channels, we introduced an ad-
ditional Conv2D embedding layer for the depth channel and
updated the model configuration to a four channel input.
We froze the backbone for the initial five epochs to stabilize
learning, then unfroze it to fine-tune the feature extractor
for the next 20 epochs. To further sharpen segmentation at
object boundaries, we included a boundary-aware loss term
leveraging the Sobel operator on the depth channel. This
two-stage freeze–unfreeze training regimen improved over-
all stability while adapting the entire network to the Scan-
Net data.

3.3. 3D U-Net for 3D Segmentation

We train a standard 3D U-Net on volumetric data, which
is obtained by fusing each ScanNet RGB-D sequence into
a four-channel truncated signed distance function (TSDF)
grid at a resolution of 4.8 cm voxel, following common
practice in ScanNet [2], using a depth limit of 5.0 m and
a truncation threshold of 5.0 cm. The input to the 3D U-
Net is a 4D tensor with dimensions (4, D,H,W ), where 4
corresponds to the channels (R, G, B, O) and (D,H,W )
are the spatial dimensions with a resolution of 4.8 cm. The
channels (R, G, B) represent the color values, and O repre-
sents the occupancy of the voxel.

The 3D U-Net is configured with five downsampling
stages, residual blocks, and skip connections, and is trained
with a combined Dice and cross-entropy loss. The net-
work outputs a 4D volumetric tensor of voxelwise logits
(N,D,H,W ), where N is the number of classes. Two
training variants are compared: one using ground-truth
depth images to build the TSDF volume, and another rely-
ing on MASt3R-generated depth maps [7] to evaluate the ef-
fect of self-calibrated geometry on segmentation accuracy.

To generate the 3D voxel representation, we use the
Open3D [1].Using RGB images, camera poses, and depth
maps, we load the intrinsic matrix from the file and extract
the focal lengths (fx, fy) and the main point (cx, cy). We
create a Scalable TSDF Volume object in Open3D by speci-
fying voxel size and truncation distance, enabling global 3D
reconstruction.
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Figure 1. 3D U-net architecture, the numbers shown are the output dimenston of each layer.

For each frame of color, depth and pose, we convert the
data into an Open3D RGBDImage and integrate it into the
TSDF volume. This maintains a globally consistent 3D
scene representation [18]. Across all frames, we fuse the
scene into one 3D volume, leveraging known pose trans-
formations. Each point map X ∈ RW×H×3 associates the
pixel (u, v) with a 3D point Xu,v via:

Xu,v = Du,vK
−1

uv
1

 (1)

To ensure consistent mapping of 2D pixels to 3D points
across multiple viewpoints, we express points from camera
n to m, we use pose matrices Pn, Pm ∈ R3×4:

Xn,m = Pm(P−1
n · h(Xn)), where h(x) =

[
x
1

]
(2)

During TSDF integration, the per-voxel color is updated
with a running average. Once complete, a triangle mesh is
extracted and then sampled into a uniform voxel grid pre-
serving the origin and voxel size.

To assign voxel-level semantic labels, we project each
voxel into 2D segmentations of all frames. The center of

the voxel is transformed into the camera coordinate frame
using inverse pose, projected using intrinsics, and validated
by comparing depth values. The class label is added to a
histogram, and the majority label is assigned per voxel.

Finally, the 4D volume (R, G, B, Occupancy) and 1D la-
bel volume are compiled as input for the 3D semantic seg-
mentation model.

4. Dataset and Features

Our primary data set comprises the ScanNet Dataset
[2],a large-scale collection of RGB-D video sequences from
indoor environments. We selected three distinct apartment
scenes to serve as our main training and evaluation envi-
ronment, designated as Apartment 1 (5578 frames), Apart-
ment 2 (1988 frames) and Apartment 3 (4439 frames).Each
frame in these scenes consists of corresponding RGB im-
ages, depth data, camera pose information, camera intrin-
sics, and semantic labels. Figure 2 shows an example of
RGB-D frames from Apartment 1 with their corresponding
overlay segmentation and Figure 3 the overall mesh. The
original ScanNet RGB images have a resolution of 1296 ×
968, while depth data were at a lower resolution of 640 ×
480. To account for this difference for model training and
evaluation, we modified the resolution of the depth maps

3



to match the RGB image resolution using nearest- neigh-
bor interpolation. For each apartment, we normalized each
RGB channel to achieve standardized pixel intensities. For
simplicity, we follow the NYU40 standard [4], which col-
lapsed the hundreds of ScanNet class labels into 41 classes
(the label 0 being void). Similarly, SegFormer was pre-
trained on the ADE20K dataset (150 classes) and Dee-
LabV3+ (21 classes) was trained on the Pascal 21 dataset.
We used the ScanNet spreadsheet of label mappings to con-
struct segmentation images in the NYU40 label space to
ensure consistent class definitions and manageable train-
ing. We performed the same dictionary mapping for Seg-
Former and DeepLabV3+. This mitigates problems such
as class imbalance and noisy tail categories that arise when
training hundreds of classes. To enrich the training set, we
ran MASt3R [7] on every consecutive frame pair in each
apartment scene, recorded its dense depth estimates and re-
fined relative poses, and compared these predictions with
the original ScanNet annotations. We generated these addi-
tional 1296 × 968 depth maps and poses so that our 3D seg-
mentation network could train on MASt3R’s geometry and
so we could later quantify how the accuracy of MASt3R’s
predictions influences downstream semantic performance.
Figure 5 shows an example comparison of a depth map gen-
erated by MASt3R compared to the original ScanNet Image
frame.

Figure 2. Scene-based segmentation. From left to right, each
row shows original RGB image, depth map, color-coded semantic
segmentation via NYU40 labels, and overlay of segmentation atop
RGB image. Best viewed zoomed-in in electronic version.

Together, our complete data set is roughly 200 GB in
size. In our model experiments, the dataset for each apart-
ment was divided into 90% for training and 10% for valida-
tion. For our 2D segmentation experiments, we randomly
assigned individual RGB-D images to training and valida-
tion sets. For 3D segmentation, we had to divide the volu-
metric representation of each scene itself, masking out spe-
cific portions of the volume for training and reserving dif-

Figure 3. Apartment Mesh. Visualization of surface mesh (left)
and corresponding semantic labels (right) for Apartment 1.

ferent, non-overlapping regions for validation to ensure that
the validation set covers spatial areas unseen by the model
during training. Figure[ 5] illustrates a sample volumetric
segmentation from Apartment 1 incorporated in the training
pipeline.

5. Experiments

5.1. Experimental Setup

For our Segformer-B0 fine-tuning, we applied the input
data comprising the 4-channel RGB-D tensor. The modifi-
cation we did for fine tuning was to replace the first convo-
lution layer to accept 4 channels instead of 3 channels, Ini-
tialize the 4th Channel weight as the mean of RGB weights.
For the backbone, we used the learning rate as 1×10−5 and
for the decoder, we used 5× 10−4, we set the batch size in
the configuration to be 2 and the total number of epochs to
be 25.

To adapt it for ScanNet, we applied random (512× 512)
crops to the RGB, depth, and label images. During valida-
tion, we used the same (512 × 512) center-crop strategy.
The 3D U-Net was trained in PyTorch [23] using the open-
source MONAI framework [19] and configured with an en-
coder–decoder depth of five stages (channel widths of 16,
32, 64, 128, and 256; stride of 2 at each downsampling),
providing a receptive field large enough to capture room-
scale context while keeping the memory footprint manage-
able. Input volumes were cropped to 64 × 64 × 64 voxels
and stacked into four channels (RGB + TSDF), with a batch
size of 8. Optimization was performed with Adam [24]
(β1 = 0.9, β2 = 0.999) and an initial learning rate of
1 × 10−4, a value that proved stable during a preliminary
sweep over {1× 10−5, 1× 10−3}. The model was trained
for 100 epochs.

5.2. Metrics

To enable consistent evaluation across all three experi-
ments, we adopt a shared set of metrics for semantic seg-
mentation performance which include Cross-Entropy Loss,
Dice Loss, and Dice-Cross-Entropy Loss (DCE Loss) for
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training objectives, as well as mean Intersection-over-Union
(mIoU), F1 Score, Accuracy, Precision, Recall, and Dice
Coefficient for evaluation.

Cross-entropy loss promotes accurate voxel-level classi-
fication by penalizing incorrect predictions, while dice loss
emphasizes spatial overlap between predicted and ground-
truth labels, making it well-suited for segmentation tasks
with class imbalance. To jointly capture both aspects we
use the combined DCE Loss defined:

LCE = − 1

N

N∑
i=1

C∑
c=1

1
(
yi = c

)
log pi,c (3)

LDice = 1 −
2

N∑
i=1

pi yi + ϵ

N∑
i=1

pi +

N∑
i=1

yi + ϵ

(4)

LDCE = λ1 LCE + λ2 LDice (5)

We propose to extend MASt3R’s geometric reconstruc-
tion pipeline by adding a lightweight 3D decoder that pre-
dicts per-voxel class labels directly in the volume. In par-
ticular, we append a UNet-style decoder to the multi-scale
feature representation learned by MASt3R, and we train this
decoder on 20 object categories provided by the ScanNet
dataset. We employ a cross-entropy loss on each voxel logit,
which is defined as

where N is the total number of voxels in a batch, pi and
yi are the predicted and ground truth labels for the pixel (or
voxel) i, ϵ is a small constant to avoid division by zero, and
λ1, λ2 balance the contribution of the two terms. This loss
has been shown to be effective for volumetric segmentation
tasks, particularly in class-imbalanced settings [22]. For
our setup, λ1 = λ2 = 1

2 .
The mean intersection-over-union (mIoU) quantifies the

degree of spatial overlap between predicted regions and
ground-truth labels across all classes. Unlike accuracy,
which can be misleading in class-imbalanced settings,
mIoU evaluates both false positives and false negatives,
thus penalizing over-segmentation and under-segmentation.
This makes it important to evaluate the consistency per class
and the overall quality of segmentation in dense scene un-
derstanding tasks such as 3D reconstruction indoors [20, 2].
For class c, IoU is defined as:

IoUc =
TPc

TPc+ FPc+ FNc
(6)

Both mIoU and Dice-based losses are particularly appro-
priate for our task given their robustness to class imbalance
and their emphasis on spatial overlap, which are essential
in dense 3D scene understanding tasks [22]. In addition to

evaluating semantic segmentation, we compare intermedi-
ate predictions of MASt3R against the ground truth of Scan-
Net to asses depth and pose precision, which are critical for
reliable 3D semantic understanding [2]. Accurate pose es-
timation and depth prediction are essential for classifying
semantic labels and 3D reconstructions, as inaccuracies in
either can propagate errors throughout the voxel integration
and segmentation pipelines [18, 5].

For pose, we measured the Absolute Trajectory Error
(ATE), which is the average difference between the each
estimated camera pose and the corresponding ground truth
pose over the trajectory; a lower value indicates better
global alignment. We also computed the relative pose er-
ror (RPE) in both its translational and rotatinal components
to quantify frame-to frame drift where consistently low RPE
values imply more accurate local alignment across sequen-
tial frames. To assess the depth map reconstruction, we re-

Figure 4. Depth Map ComparisonTwo depth maps for the
same frame in Apartment 1: left: original ScanNet depth;
right:MASt3R-estimated depth.

ported the Root Mean Square Error (RMSE) and the Mean
Absolute Error (MAE) in meters, which capture the mag-
nitude of depth deviations, and we included the Mean Rel-
ative Error (REL) to account for variations in the absolute
scale. Low RMSE, MAE and REL values demonstrate that
the predicted depths remain close to those acquired by the
real sensor recording.

Figure 5. Voxel SegmentationComparison of a voxel-based 3D
segmentation (left) and original RGB image of the same scene
(right). Each color in 3D volume corresponds to a distinct class
from NYU40 class. Best viewed zoomed-in in electronic version..
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Scene ID Model mIoU F1 Accuracy Precision Recall Dice DCE Loss

Apartment 1 DeepLabV3+ 0.034 0.041 0.095 0.077 0.060 0.057 11.164
SegFormer 0.039 0.001 0.006 0.004 0.001 0.003 11.761

Apartment 2 DeepLabV3+ 0.0034 0.0054 0.140 0.071 0.079 0.075 9.367
SegFormer 0.011 0.014 0.069 0.015 0.014 0.018 9.617

Apartment 3 DeepLabV3+ 0.033 0.052 0.219 0.060 0.074 0.079 10.732
SegFormer 0.022 0.012 0.089 0.013 0.011 0.027 11.405

Table 1. 2D Segmentation Metrics Across Apartment Scenes, rounded to three decimal places

5.3. Results and Evaluation

From the 6 we can interpret that DeepLabv3 + and Seg-
former predicted the indoor environment without so clear
segmentation compared to ScanNet Ground truth segmen-
tation.

Figure 6. Scene-based segmentation. Visualization of our
RGB Image from a Scene and respective Segmentation from the
DeepLabV3+, Segformer and Scannet Ground Truth.

We were able to fine-tune the segformer as we can vi-
sualize from Figure 7. The results from the fine-tuning are
very well classified in terms of the masking of the image
frames. In the code i did notice that there was a bug with
the validation data leak to the training image frames, but it
was very last moment to fix it. From 2 we can infer that
the three apartments show a similar order of magnitude for
each of these metrics; at the same time, MASt3R behaves
consistently in all these spaces with a minor accuracy.

Figure 7. Scene-based segmentation. Visualization of our RGB
Image from a Scene and respective Segmentation from the fine-
tuned Segformer for Apartment3

Apartment 2 in general has poorer performance due to
fewer image frames and noise from the data set captur-
ing. Usually, this happens when the scene has a lot of
elements that cause clutter, making these metrics perform
poorer. Overall, the Apartment 1 has better performance

according to the metrics because of the size of the data set
and smoother images that provide the chance for overlap for
dense fusion, reducing pose and depth errors.

Metric Apartment 1 Apartment 2 Apartment 3

ATE [m] 3.177 2.987 2.981
RPE Trans [m] 1.442 1.673 1.585
RPE Rot [◦] 23.660 24.743 23.911
Mean Tran [m] 6.724 7.912 7.314
Mean Rot [◦] 122.00 127.92 123.71

RMSE [m] 0.2616 0.2993 0.2904
MAE [m] 0.1934 0.2217 0.2331
REL 0.0950 0.1193 0.1320

Table 2. Pose and Depth Reconstruction Metrics: Quantitative
evaluation of MASt3R-predicted camera poses and depth maps
across three ScanNet apartment sequences. Lower values across
all metrics indicate more precise geometric reconstruction.

Figure 8. Training and Validation Loss Visualization of the
Training and Validation Loss per Epoch for the Apartment3

Figure 9. Results from the Final Prediction of the 3D Unet

6



Scene Depth Source Train Loss Val Loss Dice mIoU Precision Recall F1 Accuracy

Apartment 1 ScanNet 5.960 6.288 0.028 0.053 0.066 0.049 0.056 0.061
MASt3R 7.045 8.094 0.025 0.044 0.043 0.055 0.048 0.042

Apartment 2 ScanNet 7.996 8.466 0.033 0.008 0.035 0.039 0.037 0.041
MASt3R 8.312 8.682 0.030 0.009 0.037 0.029 0.033 0.039

Apartment 3 ScanNet 7.443 7.832 0.038 0.059 0.103 0.189 0.133 0.086
MASt3R 6.720 7.762 0.037 0.047 0.081 0.180 0.112 0.091
Table 3. 3-D segmentation metrics with ScanNet vs. MASt3R depth on three apartment scenes.

5.4. Analysis and Discussion

2D Segmentation. From the results, we were able to
interpret that Zero-Shot DeepLabV3 + and Segformer both
struggled when deployed directly on the ScanNet frames,
indicating that there was a gap between the COCO [26] and
AED20K [27] pre-trained models and the indoor Scannet
Scans. Both suffer from the overlap i.e the mIoU is less than
0.04, this can be intepreted as a domain mismatch between
the pre-training datasets. In Particular, DeepLab V3+ often
produces the large, black regions-evidence of widespread
miclassifications. After the fine-tuning the Segformer-B0,
We noticed that the segformer performed extremely well on
the data, which i think initally worked as per this reuslts
in the Figure7. From the metrics, we did notice that the
metrics were extremely idealistic, which was because of a
data leak from the bug in the code, but it was too late to fix
it.

3D Segmentation. From the results of the 3D Segmen-
tation Figure 3, Fusing the true sensor depth into a TSDF
volume yields 20% better mIoU and lower validation loss
showing the depth noise from the learned stereo directly af-
fects the segmantic accuracy. MASt3R depth sometimes
smooths the TSDF and yields marginally lower loss but the
noise in the MASt3R data costs real semantic accuracy.

6. Conclusion & Future Work

We were able to learn the process of acquiring a licensed
open source dataset from the owners, working on the pre-
processing of the ScanNet dataset helped us understand the
need for rgb, depth , pose and semantics to be able to gen-
erate a 3D mesh reconstruction. Running the inference on
the pre-trained models helped us gain the intuition of how
to make use of the off the shelf models with the Dataset
we have by making the dictionary classes to map the class
information.We started with the DeepLabv3+ and then we
pivoted to the Segformer based on the results we have seen
on the Metrics. The performance of the Segformer fine-
tuning yields an improvement, but the results have an issue
with the training and validation data mixing up, and it was
too late to identify the bug after running the experiments.
But we did learn the effects of the validation and train-

ing data mixup. Volumetric Segmentation using the pre-
dicted depth of MASt3R sometimes eases optimization, but
the depth of the ground truth sensor consistently produces
the higher semantic overlap. In Future, we would like to
scale to more scenes and various indoor layouts and test the
generalization, explore hybrid 2D-3D architectures with the
cross-modal transformers. Integrating this to a real-time in-
door humanoid or legged robot and running experiments is
the ultimate goal.
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