Toward Accessible, Lightweight, At Home Dermatological Screening

Nikhil Lyles
Stanford University
Department of Computer Science
nlyles@stanford.edu

Abstract

Skin conditions present a significant health burden glob-
ally with unmet levels of diagnostic and therapeutic need,
particularly in tropical and resource-poor areas. While
access to diagnosis by a medical professional and with
medical-grade equipment (i.e. dermoscopy) is lacking,
smartphone access globally has increased substantially
within recent years. This motivates the development of a
tool which could easily be accessed and used via smart-
phone and using smartphone camera imagery to aid in
the screening and diagnostics of dermatological conditions,
which I attempted in this project.

I experimented with variations on a simple CNN archi-
tecture to leverage their high performance and light weight
(low parameter count) in my attempts to tackle this prob-
lem. While existing machine learning and deep learning
models trained for skin condition classification also utilize
CNNs, they are typically focused on one or very few skin
conditions at a time, they are typically trained on higher-
quality training imagery, and they are also often based on
heavier, deeper pre-trained models with more complex ar-
chitectures. For my models, I aimed to achieve diagnostic
capabilities across many dermatological conditions simul-
taneously and opted to use lower-quality, camera-based (as
opposed to dermoscopic) imagery with my goal of broader
access to diagnostics in mind.

The models achieved around 25% classification accu-
racy, which leaves much to be desired and room for im-
provement, but the lighter architectural variations within
the tested model architectures were largely able to keep up
in performance with the heavier variations, and the experi-
mental results elucidated valuable trends and identified key
areas for further investigation.

1. Introduction

NOTE: This paper depicts and discusses ailments of skin,
which may be visually uncomfortable or upsetting for sen-
sitive viewers. Reader discretion is advised.

The World Health Organization (WHO) reports that 1.8
billion people globally are affected by skin conditions, with
other estimates putting that figure at more than a third of
the world population. Within the U.S. alone, as many as
84.5 million people (one in four Americans) are impacted,
and skin conditions of varied causes are the leading cause of
disease in tropical and resource-poor settings globally. Ac-
cordingly, it is clear that skin conditions can benefit from
better diagnostics and subsequent treatment than they cur-
rently are. Improving treatment quality and/or access is a
complicated issue far beyond the scope of this paper, but
improving available diagnostic options is certainly within
reach. With that in mind, this project sets out to develop
an accurate, timely, and accessible diagnostic tool which
works for a wide-range of dermatological conditions. With
accessibility in mind, this model is trained on a dataset of
relatively low resolution RGB imagery so that end-users
could hopefully use this tool provided access to a smart-
phone with any (functional) level of camera quality.

The goal of such a tool is not necessarily to be a strictly
diagnostic tool. For users (in areas) with access to proper
medical care, it is intended to be more of an at-home tool
patients can use to determine the nature of a dermatological
issue they may be having and to accordingly assess the se-
riousness of the issue and what kind of treatment they may
need to seek. For users (in areas) without as easy access to
proper medical care, such a tool could also serve a quasi-
diagnostic role for lack of accessible better alternatives.

In this study, I experimented with variations on a rela-
tively simple CNN model architecture in an attempt to de-
velop a lightweight model for many-class diagnostic pre-
diction/classification on camera pictures of dermatological
conditions. The models developed for and described in this
report achieve test classification accuracy around 25%, so
while they are not ready for true deployment, the differ-
ent architectural and hyperparameter variations used in the
experiments yielded valuable information and relationships
and elucidated key questions and areas requiring further un-
derstanding.

2. Related Work

My paper is certainly not the first to attempt to develop
a computer vision (CV) model or tool for dermatological
images. A very recent survey paper on computer vision ap-
proaches for dermatological condition classification noted
that CV approaches have proven beneficial through the
techniques of image pre-processing (e.g. visually removing
extraneous hair/obstructions from images), image segmen-
tation, feature extraction, outright classification, and com-
binations of these four fundamental techniques [1]. While
these are all valuable CV approaches in their own regards
and in clever combination, my project will focus on feature
identification/extraction and outright classification jointly,
as it will use deep learning (DL) methods (i.e. CNNs)
to “automatically extract relevant features from raw image
data, eliminating the need for manual feature engineering”
[1]. Although I noted my project will focus on feature ex-
traction and classification jointly, the learned features are a
means to an end for the sake of my model’s classification
ability and robustness (as opposed to the learned features
being a focal result as well, wherein I could visualize or
otherwise study the learned features to assess whether any
of the significant learned features possess evident clinical
significance or usefulness).

One thing that sets my project apart from other prior ap-
plications of CV to dermatological condition diagnosis is
the intended breadth and robustness of my model’s classi-
fication capabilities. Other CV applications, for example,
have often focused on segmentation, prognostics (e.g. stage
identification), or positive-negative classification for a sin-
gle (or few) condition(s) at a time, such as melanoma di-
agnosis or psorias assessment [1]. Additionally, even when
DL methods have been previously applied to multi-class di-
agnosis, they have been predominantly trained on the In-
ternational Skin Imaging Collaboration (ISIC) challenge
datasets or other assorted dermoscopic datasets, which is
problematic for multiple reasons [2]. For one, the ISIC
datasets have at most 7 classes for diagnostic classifica-
tion (as of their latest/final 2020 iteration), and other der-
matology datasets have that many at most if not typically
even fewer classes. This necessarily limits (encodes less)
diagnostic specificity into a given model’s capabilities if
trained on one of these datasets with less granularity of
class labels (i.e. more specificity of dermatological con-
ditions as class labels). Given that the Dermnet dataset
which I used (described in further depth later) contains 23
class (dermatological condition) diagnostic labels for my
model to learn and discern between, it represents a three-
fold increase in diagnostic granularity/specificity over other
dermatological datasets and their respective models. Also,
of the widely-known/-accepted publicly available dermatol-
ogy image datasets, Dermnet is the only one which is based
on a clinical image (normal digital photography) modality

rather than the “dermoscopic” modality (which is similar to
clinical imagery but is taken using specialized equipment
which magnifies and illuminates features which aren’t visi-
ble to the naked eye) [1]. With this in mind, my project’s use
of the Dermnet dataset uniquely positions it as trained on
and focused on commonly available photography, making
it more well-suited to my accessibility goal than other, prior
DL models trained exclusively on dermoscopic datasets.

3. Data

The data I worked with for this project comes from a
publicly available portion of the Dermnet Skin Disease At-
las (previously available through https://dermnet.
com and now preserved for present/continued use on Kag-
gle). This dataset contains roughly 19,500 images, with
an approximately 80-20 pre-provided train-test split leaving
around 15,500 images for training and the remaining around
4,000 images for testing. I further chose to randomly split
the pre-allocated testing images into half (about 2,000 im-
ages) each for validation and testing.

Training ‘ Validation ‘ Testing ‘ Total
15,557 ‘ 2,001 ‘ 2,001 ‘19,559

Each image in this Dermnet dataset is in the standard
JPEG image format and is RGB (i.e. has 3 channels).
Notably, the images have varied resolutions, so I did
some (fairly minimal) preprocessing to standardize their
resolutions before proceeding. Each image in this dataset
contains exactly one label corresponding to one of the 23
(class) label options, which I will list below as follows:

1. acne and rosacea

o

actinic keratosis, basal cell carcinoma, and other ma-

lignant lesions

atopic dermatitis

bullous disease

cellulitis impetigo and other bacterial infections

eczema

exanthems and drug eruptions

alopecia and other hair loss diseases

herpes, HPV, and other STDs

10. vitiligo, light diseases, and other pigmentation disor-
ders

11. lupus and other connective tissue disorders

12. melanoma (skin cancer) and nevi (moles)

e Al

13. nail fungus and diseases

14. poison ivy and other contact dermatitis

15. psoriasis and related diseases

16. scabies, Lyme disease, and other infestations and bites
17. seborrheic keratoses and other benign tumors

https://dermnet.com
https://dermnet.com

18. systemic disease-related symptoms

19. tinea (ringworm), candidiasis,
sitic/fungal infections

20. urticaria (hives)

21. vascular tumors

22. vasculitis

23. warts, molluscum, and other viral infections

and other para-

I’ve provided an example of an image from the dataset in
Figure 1, for reference.

Figure 1. An image from the Dermnet dataset used for this study
depicting eczema (the class label/diagnosis) with excoriation (a
clinical symptom/feature).

One noteworthy detail about this dataset is that the
images all (as far as I could tell) contain a central
“”Dermnet.com” watermark, as our example image demon-
strates. Although this slightly detracts from the quality of
the dataset, I noted that the watermark is relatively unob-
trusive and made the decision to proceed with using this
dataset. If anything, I believed that my use of particular
model architecture(s) (i.e. CNNs) would help computation-
ally learn features as well as their relative importances in
distinguishing between the identified classes for these im-
ages (in which case, it would more or less learn the wa-
termark as a feature and realize its diagnostic insignifi-
cance/invariance). More over, while this watermark is a
consistent form/amount of “noise” across the images in this
dataset, my hope is also that this detractor from the image
quality supports if not enhances my model’s ability to per-
form diagnosis on relatively lower quality images (as is one
of the central goals of this project).

4. Methods

The convolutional neural network (CNN) is a tried and
true DL model architecture within the field of CV, largely
due to its ability to pick up subtle, non-obvious image fea-
tures within the data while respecting and preserving infor-
mation about the (relative) locality of these features. It’s
no surprise, then, that CNNs have also been one of the
most popular architectures within the application of DL to

biomedical CV applications, notably to prior attempts at
dermatological image DL classification models. As such, I
opted to implement a CNN for this project due to the CNN’s
track record (both generally and in this application), its rel-
ative efficiency (e.g. lightweight-ness) compared to some
other model architectures, and its feasibility of implemen-
tation.

First, as I alluded to in the Data section, I preprocessed
the images of the dataset. Namely, I resized all images in
the dataset to a standardized resolution of 256 x 256 pixels
(hence the data for each image would be 3 x 256 x 256).
Again, since the model being lightweight was a central in-
tended feature (both for the sake of training feasibility and
the longer-term goal of portable deployment of my model),
I opted for a CNN, and one of only moderate depth at that.
The first architecture I experimented with had three cycles
of 2D convolution, ReLLU activation, and 2 x 2 max pooling
(in that order) followed by a flattening step and two sub-
sequent fully-connected (linear) layers (each followed by
a ReLU nonlinearity) and finally the classification head. I
used an Adam optimizer and cross entropy loss (which is
standard for multi-class classification). Due to the relatively
small dataset (~19,500 images), I didn’t think that a more
complex model (e.g. a vision transformer) would be appro-
priate in this case, and I opted to stick with a lighter CNN.
For the convolutions, the first Conv2D layer used 5x5 fil-
ters to try and capture slightly larger features from the im-
ages before the max pool downsampling had compressed
them away, and I used standard 3x3 filters for the remain-
ing 2 Conv2D layers (with the appropriate padding at each
step to maintain original dimensionality aside from chan-
nels increasing before the max pool downsampling halved
the dimensionality). The two dense linear layers had hidden
dimensions of 256 and 64.

For the sake of continuity and simplicity throughout this
study, I opted to stick with the original skeleton of my CNN
architecture as a starting point for all of my proposed archi-
tectures and experiments. With that said, I did make some
architectural changes (in addition to hyperparameter adjust-
ments) during my experiments (which I will discuss in more
detail in the following section). Although my model(s) may
achieve results which leave something to be desired, I up-
hold and maintain the legitimacy of these architectural and
experimental choices as my project is fundamentally still
attempting something new that other developed models and
investigations have not (namely, wider-scale simultaneous
classification with an emphasis on lighter model weight).

Owing to memory constraints, relative familiar-
ity/simplicity, and other factors, I opted to train my models
locally rather than in a cloud instance. I implemented nearly
all aspects of my pipeline (data loading and processing,
model class implementations, training) in a Jupyter note-
book, I used a Conda environment based on Python 3.13.4,

and [used a NVIDIA RTX 3070 using CUDA version 12.6.
With this setup, it took between 3-4 minutes for the data
loading and pre-processing (resizing) step (with some slight
variance upon re-running this process), and it took just
around 10 minutes for each model training run. Model eval-
uation typically took negligible time (i.e. only a few sec-
onds). The exception to my local development choice was
that I opted to program and execute my code for non-loss
evaluation metrics (i.e. accuracy and confusion matrix) tab-
ulation and plotting in a Jupyter notebook ran on a Google
Colaboratory (Colab) CPU-based runtime instance. I made
this decision after persistent, environment-breaking errors
with my Conda environment(s) upon attempting to install
the Matplotlib package (and/or other plotting libraries) de-
spite multiple attempts to create a completely fresh Conda
environment and carefully install only the strictly necessary
packages. As such, an additional methodical consideration
for my specific pipeline is that I saved (exported as files)
the PyTorch tensors corresponding to the confusion matri-
ces I computed on the test set for each experiment and then
loaded in (from their respective files) these PyTorch tensors
into the Colab Jupyter notebook for further processing and
evaluation.

Lastly, I'd like to specify the evaluation metrics I used
for this project. I mentioned above that I used cross entropy
loss as a vital metric for training updates and evaluation.
Additionally, I evaluated fully-trained (and seemingly vi-
able) models using both accuracy and confusion matrices.
These metrics together give a fairly good, comprehensive
understanding of the model’s performance on a micro- and
macro-level.

5. Experiments and Results

For my first experiment, I trained my initial architecture
with a learning rate of 0.001, a weight decay of 0.0001, 10
epochs of training, and a batch size of 100. Unfortunately,
this first experiment had quite poor results. It was immedi-
ately evident upon looking at the training loss vs validation
loss (seen in Figure 2 below) that something had gone awry:

While training loss steadily decreased across the course
of the training epochs, validation loss barely decreased for
one epoch and then steadily, egregiously increased across
the remainder of the training duration. This is a hallmark
sign of the model overfitting to the training data, which im-
mediately proved to be an essential problem to mitigate dur-
ing the subsequent experiments. Moreover, with this signif-
icant degree of (suspected) overfitting occurring and given
my reasonably conservative hyperparameter choices for the
first experiment, I heuristically concluded that this model
architecture’s performance would most likely not be sal-
vaged/remedied by adjusting the hyperparameters. As such,
I decided then to consider experimenting with the model ar-
chitecture. First, let us consider the number of parameters

Loss vs Epoch Number

—— Training Loss
Validation Loss

a
ERER \

2 4 6 8 10
Epoch Number

Figure 2. Training loss and validation loss plotted side-by-side as
a function of epoch number during training for experiment 1.

(per layer) in our original model architecture below, in fig-
ure 3:

Layer Params
Convl 1,216
Conv2 4,640
Conv3 18,496
Linearl 16,777,472
Linear2 16,448
Output (Linear Head) 1,495
Total 16,819,767

Figure 3. Number of trainable parameters per unique layer of the
original model architecture

Overfitting can occur for a number of reasons, but it
seemed apparent to me that it was most likely occurring
in this first experiment due to the model actually being foo
complex for its own good! Despite the relative simplicity
of my original proposed model architecture, the best expla-
nation for this training behavior in the first experiment was
still that the model possessed too many trainable parameters
(and possibly too many layers).

From Figure 3, there was one obvious layer to target
for modification and/or elimination in subsequent exper-
iments (given it contained the overwhelming majority of
parameters): Linearl. Accordingly, I changed the Lin-
ear] layer’s hidden/output dimension from 256 to 64, which
would overall reduce the model’s number of parameters to
nearly one fourth of first experiment’s amount. Making this
change and also increasing the weight decay from 0.0001 to
0.001 (1e-4 to 1e-3) while keeping the remaining architec-
ture and hyperparameters the same yielded the loss graph in
Figure 4 as a result.

Loss vs Epoch Number

4.0 4
—— Training Loss

Validation Loss

3.5 4

3.0

Loss

2.5

2.01

1.5

2 3 6 8 10
Epoch Number

Figure 4. Training loss and validation loss plotted side-by-side as
a function of epoch number during training for experiment 2.

While at first glance Figure 4 appears to display simi-
lar trajectories for training loss and validation loss as Fig-
ure 2 does, a slightly closer look reveals a promising re-
sult that this second experiment successfully took a step in
the right direction: in the second experiment, although val-
idation loss did eventually start increasing despite training
loss consistently increasing, this turnaround started later in
the training process than during the first experiment (from
the fifth epoch onward rather than from the third epoch on-
ward). This signaled that the second experiment’s less com-
plex model was likely less prone to overfitting in the same
amount of time as the original model architecture. Addi-
tionally, the validation loss exceeded 4 by the seventh train-
ing epoch during the first experiment and nearly reached 6
(5.86), but the validation loss increased at a slower rate even
after it started increasing during the second experiment and
stayed below 4 the entire time (max/final validation loss of
3.92). These improvements and trends in the validation loss
across the two experiments thus far were also reflected in
the test loss values for these two experiments (i.e. the loss
computed for our models evaluated on the previously un-
seen” by the model test dataset), as the first experiment’s
final model at the end of training achieved a test loss of
5.77 while the second experiment’s final model achieved a
test loss of 3.98.

Looking at loss values and trends alone, it initially
seemed that experiment 2 had improved the model inso-
far as it reduced overfitting. However, somewhat surpris-
ingly, the second experiment attained a slightly lower test
accuracy than the first experiment (21.4% as opposed to
26.3%) despite the second experiment having substantially
lower test loss. This challenged my previous heuristic as-
sumption that (test) loss more-or-less tracked with (test)
accuracy, and I will discuss this observation and potential

causes/implications in the following Conclusion section.

Nonetheless, I continued my experiments as planned, un-
deterred. For the sake of a control, I repeated experiment 2
but with the same original hyperparameters as experiment 1
(the only difference being that I restored the weight decay
hyperparameter to 0.0001 (1e-4). This new experiment was
experiment 3 in my study, and it achieved summary eval-
uation metrics between those of experiment 1 and experi-
ment 2 on all accounts (loss trajectories for both training
loss and validation loss were similar but between the two
experiments), achieving a final test loss of 4.51 and a final
test accuracy of 24.4%. To visualize the classification per-
formance and issues of these first three experiments, I've
included the confusion matrices for the final trained model
evaluated on the test set for each of the first three experi-
ments, in order, in Figure 5.

Based on a cursory examination of these confusion ma-
trices, we see that experiments 1 and 3 have highly sim-
ilar confusion matrices, but both experiments 2 and 3
make fewer true positive predictions for class 0 (“Acne and
Rosacea”) while experiment 2 makes substantially more
(true positive) predictions for class 16 (“Seborrheic Ker-
atoses and other Benign Tumors”) than experiment 1 and
experiment 3 makes substantially more (true positive) pre-
dictions for class 1 (“Actinic Keratosis, Basal Cell Carci-
noma, and other Malignant Lesions”) than experiment 1.
This suggested that reducing the number of trainable param-
eters by modifying the model architecture (a fixed change
from experiment 1 to experiments 2 and 3) most likely re-
sulted in the model fundamentally shifting its distribution
of classification predictions, as evidenced by experiments 2
and 3 skewing their predictions noticeably toward classes
16 and 1, respectively. Exactly how the classification pre-
diction distribution shifts seems slightly unpredictable and
inconsistent, given that experiments 2 and 3 shifted more
noticeably to two distinct classes from one another despite
the only difference being the weight decay hyperparameter
choice.

One other interesting result was that a lower weight de-
cay value (le-4 in experiments 1 and 3 vs le-3) was as-
sociated with better test accuracy despite higher test loss.
Accordingly, I opted to repeat experiments 1 and 3 without
weight decay (0 for the weight decay hyperparameter) as
experiments 4 and 5, respectively. While I did continue to
keep an eye on and record the (training and validation) loss
histories and test loss, I opted to mostly abandon them as
my primary concern/evaluation metric for the remainder of
my experiments, electing to focus instead on test accuracy
and manual inspection/analysis of the confusion matrices.
Experiment 4 showed a very slight decline in performance
compared to experiment 1 (final test loss of 6.02 and final
test accuracy of 24.4%), but experiment 5 showed the most
promising results out of any of the models on the smaller

0
1 120
2
3
4
100
5
5]
7
8 80
— 9
£ 10
=11
g 12 80
= 13
14
15 40
16
17
18
19 20
20
21
22 0 6 £ 0
012345678 910111213141516171819202122
Predicted label
100
80
3
] 60
v
I
E
40
20
4]
100
80
] 60
e}
=
7]
2
',_
40
20
o]

012345678 910111213141516171819202122
Predicted label

Figure 5. Confusion matrices for the first three experiments, in
order. Each confusion matrix was obtained by evaluating the final
epoch’s trained model from the corresponding experiment on the
pre-determined, unseen test dataset.

architecture used in experiments 2 and 3 (final test loss of
5.01 and final test accuracy of 25.6%). While the experi-
ment 4 result was disappointing in comparison to the analo-
gous experiment 1 (higher final test loss and lower final test
accuracy), experiment 5 upheld and maintained the trend
for the second, lighter architecture that reducing the weight
decay hyperparameter value contributed to better final test
accuracy despite increasing final test loss.

I also decided to further modify my model architecture
as a form of regularization and experimentation. For ex-
ample, I wanted to try adding a training-time dropout layer
(and consider options for the dropout probability), and I
also wanted to try removing the second linear layer to see
what effect it would have. For all remaining experiments, I
started with the already pruned model (used in experiments
2, 3, and 5) as the starting point for these model architec-
tural modifications. For experiment 6, I removed the second
linear layer from this model architecture. As for experi-
ments 7 and 8, I left the second linear layer of the model
architecture intact and added a dropout layer after the final
output of the convolution phase of my model (for simplicity,
after the flattening step), using the default dropout probabil-
ity 0.5 for experiment 7 and a reduced dropout probability
of 0.2 for experiment 8. Experiments 6, 7, and 8 all used the
same hyperparameter configuration as experiment 5 (i.e. 0
weight decay and all other prior selections). Experiment 6
achieved a final test loss of 5.98 and a final test accuracy of
22.9%, which represented a decline in performance relative
to experiment 5. As for experiments 7 and 8, experiment
7 achieved a final test loss of 3.52 and a final test accuracy
of 24.6% while experiment 8 achieved a final test loss of
5.00 and a final test accuracy of 24.1%. It was very inter-
esting for me to see that dropout didn’t effect the final test
accuracy that much, but it did have a substantial effect on fi-
nal test loss. Additionally, removing the second linear layer
had a significantly detrimental effect, so I opted to run two
final experiments starting from the experiment 5 architec-
ture/paradigm: one (experiment 9) with the hidden/output
dimension of the second linear layer increased to 256 (as
opposed to its current value of 64), and one (experiment 10)
with that change plus the dropout layer used in experiment
7 (default dropout probability of 0.5). Since this second lin-
ear layer takes as input tensors of length 64, the “cost” (i.e.
increase in number of parameters) is very light to increase
the output/hidden dimension as opposed to the first linear
layer. Experiment 9 achieved a final test loss of 5.26 and a
final test accuracy of 24.7%, while experiment 10 achieved
a final test loss of 3.69 and a final test accuracy of 24.8%.

Before I proceed to discuss and analyze my results fur-
ther, I'd like to recapitulate what experiments I have per-
formed. For the sake of space in this table and one more
to follow summarizing the results of my experiments, I use
the abbreviations WD for weight decay, EN for experiment

number, FTL for final test loss, FTA for final test accu-
racy, BTL for “best” test loss, and BTA for “best” test accu-
racy, where the final metrics come from each experiment’s
model at the end of training time while the “best” met-
rics come from evaluating each experiment’s saved “best”
model (based on lowest validation loss) on the test set. Be-
fore seeing the “best” model metrics for the experiments, I
expected that they wouldn’t necessarily be better than the
final model metrics given that we had already seen little to
no correlation between final test loss and final test accuracy
already. I also refer to the architecture used in experiments
2, 3, and 5 as 1st pruned architecture. The experiments are
summarized below:

EN Description
1 Original Architecture & le-4 WD
2 Ist Pruned Arch. (1PA) & 1e-3 WD
3 1PA & 1e-4 WD
4 Original Arch. & 0 WD
5 1PA & 0 WD
6 Exp. 5 w/o 2nd Linear Layer
7 Exp. 5 w/ 0.5 dropout
8 Exp. 5 w/ 0.2 dropout
9 | Exp. 5 w/ augmented 2nd Linear Layer
10 Exp. 9 w/ 0.5 dropout

I summarize the results of my experiments in Figure 6 be-
low, highlighting some of the more (in my opinion) notable
results.

EN | FTL | FTA | BTL | BTA
1 | 577 | 263% | 2.74 | 19.6%
2 | 398 | 214% | 271 | 20.2%
3 | 451 | 244% | 2775 | 19.1%
4 1602 |244% | 2.74 | 21.6%
5 | 501 | 25.6% | 2.73 | 19.5%
6 | 598 | 229% | 2.80 | 17.3%
7 | 352 | 24.6% | 277 | 19.3%
8 |5.00 | 24.1% | 2.76 | 20.1%
9 |526|247% | 276 | 17.7%
10 | 3.69 | 24.8% | 2.71 | 19.6%

Figure 6. Summary of evaluation metrics for the experiments ran
in this study.

6. Conclusion
6.1. Discussion

One noteworthy takeaway from this study was that, in the
case of this problem and the models developed for it at each
experiment, test loss did not correlate with test accuracy in
the expected manner (i.e. lower test loss corresponding to
higher test accuracy and vice versa). One potential reason

this can occur in general (and why I suspect it occurred in
the course of this project) is the existence of class imbal-
ances (i.e. when the number of examples/elements in the
different classes is highly varied and some classes are not
comparable/close enough in size). Similarly, the model for
each experiment identified as “best” (based on lowest epoch
validation loss during training) universally had lower test
loss but lower test accuracy than their corresponding final
models from the end of training. In fact, every single ex-
periment’s “best” model had lower test accuracy than the
worst performing (by way of lowest test accuracy) of the
experiments’ final models. This observation challenges my
earlier (heuristic) assumptions that validation/test loss in-
creasing would strongly predict worsening test accuracy of
the models in question (and vice versa).

Another interesting observation was that decreasing
weight decay had mixed results (improving FTA for 1PA
models but decreasing FTA for the original architecture)
despite consistently increasing loss (with other factors held
constant) across the board. I suspect it’s because the origi-
nal architecture simply had so many more parameters than
the 1PA(-based) models (nearly four times as many param-
eters), so the presence of weight decay was helpful when
there were more parameters (thus needing their values to
be somewhat reined in) while it was detrimental (at least,
less helpful) when there were fewer parameters (it may have
overly reined in/restricted the ability of these fewer param-
eters to learn appropriate values). With that said, I was still
left with the question of the disconnect/inconsistency be-
tween the FTL and FTA trends when varying weight de-
cay as well. For lack of a more evident conclusion at the
moment, I suspect this returns to the first observation I
made and the probable effects of imbalanced classes in the
Dermnet dataset I used for this study.

Lastly, some other promising observations I wanted to
note are that the significantly lighter weight 1PA-based
models were able to achieve comparable performance to
the much larger models based on the original architecture
and that dropout with the default dropout rate (p = 0.5)
detracted very little or slightly increased the performance
(classification accuracy) of the corresponding models with-
out dropout while reliably lowering the test loss and vali-
dation losses. The former observation indicates that there
is hope yet that, in future work, lighter weight models (e.g.
by a factor of four as here) can keep up fairly well with
much heavier models in performance while saving training
and inference cost and overall being more deployant, and
the latter observation signals that dropout is one of the most
consistent, reliable regularizers we experimented with in the
course of this project. While loss (training loss history, val-
idation loss history, or final test loss) was not particularly
correlated with or predictive of accuracy performance in
this project, the ability and efficacy of dropout to regular-

ize this (or related) model architectures could prove useful
when the class imbalance issue is better understood and/or
mitigated (i.e. when there is a more typical, expected re-
lationship between the various loss metrics and predictive
accuracy/performance).

6.2. Further Work

In further work based on and expanding upon the work
done and described in this project, I have several goals in
mind and factors I'd like to investigate further. One fairly
straightforward goal (with a far less straightforward path to
achieving it) is that I’d like to work on improving classifi-
cation prediction accuracy on this task. While it’s certainly
better than random (% ~ 4.35%), the ballpark of ~ 25%
for comprehensive test accuracy still leaves much to be de-
sired with regards to performance. I'd probably experiment
with a few other architectural modifications as well

Two other, possibly related goals for future work would
be to investigate the (seemingly variable) tendency of the
1PA-based models trained and evaluated in this study to
skew their class prediction distributions relative to the orig-
inal architecture and to investigate the effects of the class
imbalances in the (Dermnet) dataset on various aspects of
the model’s training and performance (particularly to better
understand its effects on the relationship between training
loss, validation loss, test loss, and accuracy/performance).
I suspect that some of the effects of the class-imbalanced
dataset may be in part responsible for the former issue of the
1PA-based models skewing their prediction distributions, so
that would be an interesting hypothesis to investigate, po-
tentially by using more granular evaluation metrics such as
precision, recall, F1 score, and more. In addition to better
understanding the effects of class imbalances in this specific
case, I’d also like to attempt to mitigate these effects by ex-
ploring methods such as data augmentation, adjusting class
weights during training and/or evaluation, and others.

While I still stand by my choice to attempt to tackle this
23-class classification task, I also think it might be worth
trying to develop a model based on a subset of this Dermnet
dataset containing fewer classes but still more than other
projects have tackled (e.g. 10-12 clases) as an intermediary
task which is hopefully more feasible while being a pro-
ductive, meaningful stepping stone toward my larger, more
ambitious goal introduced in this report.

References

[1] P. Gupta, J. Nirmal, and N. Mehendale. A survey on com-
puter vision approaches for automated classification of skin
diseases. Multimedia Tools and Applications, pages 1-33,
2024. 2

[2] S. E. Sorour, A. A. Hany, M. S. Elredeny, A. Sedik, and
R. M. Hussien. An automatic dermatology detection system

based on deep learning and computer vision. /EEE Access,
11:137769-137778, 2023. 2

