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Abstract

Preventive care recommendations for breast cancer re-
quire that women above a certain age be regularly screened
by mammography [1, 2]. Computer aided interpretation of
mammograms involves the extraction of features of suspi-
cious areas in the mammograms and providing these as in-
puts to a clinical decision support system. While the ex-
traction of computational features (such as geometry, con-
trast, intensity, texture) from a given region of the image
may be easily automated, extraction of semantic features
(for instance the type of lesion and its pathology) has tra-
ditionally relied on radiologists documenting their findings
in structured or free format text. Deep convolutional neu-
ral networks have demonstrated the ability to outperform
skilled humans in certain observational tasks [3, 4]. In our
study, we investigate the feasibility of training a convolu-
tional neural network with annotated lesion images drawn
from the Digital Database for Screening Mammography
(DDSM). We report our results on two label prediction tasks
that influence mammogram interpretation and downstream
clinical actions related to diagnosis, intervention and prog-
nosis. Here we examine the application of a purely data
driven approach to the task of predicting semantic features,
using a corpus of annotated images for training our pre-
dictor. We examine the application of a purely data driven
approach to the task of prediction of semantic features as a
means of improving overall efficacy of screening mammo-
grams and ultimately improving the clinical care for breast
cancer patients.

1. Introduction

One in eight U.S women is expected to develop inva-
sive breast cancer over the course of her lifetime [5]. In
2014 an estimated 232, 570 new cases of invasive breast
cancer were diagnosed in the US and the estimated number
of patient deaths on account of breast cancer were 40,000.
For women above a certain age, screening mammography

is recommended as the standard for preventive care and is
estimated to result in a 3 − 13% reduction in mortality. As
illustrated by Barlow et al [6] human errors (inter- observer
variability in the interpretation of screening mammograms)
is also a well known problem. False positives result in over-
diagnosis, over-treatment and by consequence, psychologi-
cal and financial distress to otherwise healthy patients. Vi-
sual similarity between normal dense tissue and many types
of breast cancers may also result in false negatives, and to-
gether with a significant false positive rate, this results in
the diminished efficacy of screening mammography. Rec-
ognizing that manual classification of tumor images is error
prone, given the large number of noisy predictor variables
and interactions, techniques for automatic classification are
a subject of active research [7, 8]. As models that can ef-
fectively capture complex interactions between a large num-
ber of predictors, as well as possible non-linearities between
predictors and the outcome variable, neural networks have
been studied extensively for various tasks related to charac-
terizing breast tumor images. Stafford et al [10] employed
an ensemble of neural networks for detecting (segmenting)
micro-calcifications in mammograms and achieved 84%
sensitivity and 75% specificity. The work of Zhang et al
[11] focused on classification of micro-calcification clusters
based on thresholded counts of distinct micro-calcifications.
Other approaches for micro-calcification detection [12, 13]
have utilized pre-extracted features from suspicious regions
as inputs to neural networks and have been successful in re-
ducing the number of false positives that recommended for
further investigation.

To the best of our knowledge, characterization of sus-
picious lesion images using a purely data driven approach
has not yet been attempted. The availability and adoption
of a standard terminology for description of breast lesions,
the availability of annotated mammograms databases for
research, combined with recent advances in training large
convolutional neural networks for complex image classifi-
cation tasks present a compelling opportunity to do so.
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2. Approach
We trained convolution neural networks (conv-nets) on a

cropped and augmented set of images of breast lesions, la-
beled for a set of characteristics that are deemed relevant in
tumor assessment. We evaluated our networks on two clas-
sification tasks namely classification of lesions as masses
versus calcifications, and classification of lesions as benign
versus malignant.

2.1. Data

We used mammograms from the Digital Database for
Screening Mammography (DDSM) [14], a collaboratively
maintained public dataset at the University of South Florida.
DDSM consists of 2,500 studies each containing two im-
ages of each breast, associated patient metadata, image in-
formation and a pixel-level ground-truth annotation of sus-
picious areas. The dataset is available as a compressed
archive that requires decompression into a raw data format
(RAW) and conversion to the original Portable Pixelmap
format (PNM) based on the original image dimensions. The
images are organized into 12 normal, 15 malignant and 16
benign volumes with a total of 8,752 images representing
2,620 cases. Pixel masks for the regions of interest are de-
scribed in the overlay files associated with each image, us-
ing which the pre- segmented regions were cropped out and
resized so that the shorter dimension was 64 pixels. From
each resized crop, two to three 64x64 patches were sam-
pled randomly and the resulting squares were each rotated
7 times in steps of 45 degrees. The augmented data set con-
sisted of 50,000 lesion images representing various transla-
tions and rotations of the base images as described above.

Each lesion image (a region of interest on the mammo-
gram) has been annotated using a standard terminology that
derives from the American College of Radiology’s (ACR)
Breast Imaging Reporting and Data System (BI-RADS)
[15]. The annotated features consist of categorical descrip-
tions of lesion characteristics such as mass shape, margin
descriptors, calcification type and distribution, tumor as-
sessment etc. In order to compare our results with earlier
approaches, we selected the mass/calcification annotations
as our outcome labels. The annotations also include a ma-
lignancy assessment that may be negative, benign, proba-
ble, suspicious or highly suggestive. In order to evaluate a
conv-net’s performance on a malignancy assessment task,
we created a second set of labels with the aforementioned
annotations collapsing negative and benign cases into one
category and the remaining into another category.

3. Results
We split our dataset into a training set consisting of

40,000 images, and a test set consisting of 10,000 images,
taking care to ensure that the two sets had roughly the same

Figure 1: Mass vs Calcification conv-net Structure

proportion of the positive and negative labels. All images
were mean centered using the training set mean. For each
of the two binary classification tasks, we trained a separate
conv-net.

With several tunable hyper-parameters, finding an opti-
mal set would require an exhaustive search that is usually
intractable given finite computational resources and time for
completion. We followed a coarse-to-fine sweep approach
for filter sizes, number of filters, learning rate and weight
decay. For other hyper-parameters we tried to obtain stable
values that do not degrade our results. We note that fur-
ther optimization of our network and learning parameters
could lead to better results than what we present below. We
implemented our conv-nets in Caffe [16] as protocol buffer
definitions and used the stochastic gradient descent imple-
mented within Caffe’s solver to train the models in GPU
mode.

3.1. Calcification versus mass classification

In order to distinguish between masses and calcifications
a six layer conv-net was applied as illustrated in figure 1.
Networks ranging in size from 3 through 8 layers were an-
alyzed. Our final conv-net network size was determined by
balancing improvements in testing accuracy with network
training speed. Additionally, regularization and learning
rate parameters were optimized using a parameter sweep
approach.

After this conv-net was trained, a maximum accuracy of
approximately 87% was achieved. This is comparable to
previous neural net approaches to mammogram mass iden-
tification [17, 18]. Figure 2 shows some sample test images
correctly identified by the trained convolutional network.



(a) Sample correctly identified calcification

(b) Sample correctly identified mass

Figure 2: conv-net Classification Results

As may be seen in the figure 3, the training loss continu-
ally decreased as the network was trained with loss leveling
off towards the final iteration. This helps to demonstrate
convergence for the network on the training datset. Like-
wise, the test set prediction accuracy steadily improved with
convergence after approixmately the 20000th iteration.

Figures 5 and 6 show filter and layer activation visuiliza-
tions for the fully trained network respectively. The layer
activation visuilization is sparse and localized as expected
for a trained network. Likewise the smooth filter visuilaza-
tion suggests that the network has converged. These two
results help to indicate convergence as well as a proper se-
lection of parameters for the network.

3.2. Malignancy assesment

The conv-net for the malignancy assessment task con-
sists of five convolutional layers followed by three fully
connected layers. Each convolutional layer is followed by
pooling, a rectified linear activation (RELU) and a dropout
layer with drop out parameter = 0.5. This is illustrated in
figure 7. For the malignancy assessment task, our conv-net
showed sufficient capacity to be able to overfit the training

Figure 3: conv-net A Training Loss History

Figure 4: conv-net A Test Accuracy

data. As evident from figure 9, the training accuracy was
close to 90% after 35,000 iterations. However, experiment-
ing with learning rate reduction after 35K iterations did not
show further decrease in loss values. The best validation
accuracy obtained was 69.8%.

Loss and accuracy histories during training are shown in
figures 8 and 9 respectively.

4. Discussion

In terms of the calcification vs mass indentification task,
our conv-net was able to achieve a high degree of accuracy,
comparable with previous attempts in applying conv-nets
[17, 18] as well as traditional neural nets[19] to mass iden-
tification.

Being able to classify micro-calcifications correctly is



Figure 5: conv-net A Layer 1 Filter Visualization

Figure 6: conv-net A Layer 1 Weight Visualization

important in cancer assessment since as high as 80% of
breast cancers reveal some level of micro-calcification on
histological examination. Accurately assembling the mor-
phological and texture features of micro-calcifications by
visual inspection is likely to be error prone given the variety
in size, shape and distribution of micro-calcifications[20].

Figure 7: conv-net B

Figure 8: conv-net B Test Accuracy

A recapitulation of micro-calcification image features may
be obtained from the trained filters of conv-net A (figure 6)
that appears to suggest patterns of spatial distributions and
geometry observed in micro-calcifications. As these fea-
tures have been learnt by conv-net A directly from pixel
data through loss optimization, they are the best features
for visually discriminating micro-calcifications from other
types of lesions. The decision to recommend diagnostic
tests (biopsy) also takes into account several other clini-
cal factors such as patient history, menopausal status, age
etc. In conjunction with the features learnt by the conv-
net, these are likely to be good predictors of malignancy
and candidate inputs to a clinical decision support system.
In general, a better modeling of the posterior probabilities
for malignancy could be achieved by first discriminating the
tumor type, which is easily achieved by chaining together
conv-net A and conv-net B.

The reason for low validation accuracy obtained by



Figure 9: conv-net B Loss history

conv- net B on the malignancy assessment task is proba-
bly because malignant lesions take on a variety of different
appearances depending on the type of lesion and the tumor
stage. Conv-nets can provide the required expressiveness to
learn from such datasets, provided sufficient observations
are available. Another reason could be noise in the training
ground truth itself. Instead of using known outcomes, we
have used clinician assessment of malignancy at the time of
screening which is known to be frequently erroneous, and
further have collapsed probable and highly suggestive cat-
egories into one to reduce the complexity of our architec-
ture. Additional training data, more aggressive augmenta-
tion along with a clean labels will likely result in better per-
formance with a conv-net architecture similar to what we
have used.

Finally, although we analyzed mammography interpre-
tation as a binary problem, standard annotation practice is
to simultaneously score a region of interest along several
parameters, each described unambiguously as a BIRADS
term. The conv-net approach described here, could be ex-
tended to take advantage of the full image annotation by
defining the outcomes as structured labels.

5. Conclusion

In this paper, we reviewed the applicability of Convo-
lutional Neural Networks to the problem of Mammogram
interpretation. Overall, the results discussed in this paper
indicate the validity of using conv-nets to learn data-derived
features from mammograms, that may be used for a variety
of clinical decision support tasks.
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