
Using Convolutional Neural Networks and Transfer Learning to Perform Yelp
Restaurant Photo Classification

Diveesh Singh
Stanford University

450 Serra Mall, Stanford, CA 94305
diveesh@stanford.edu

Pedro Garzon
Stanford University

450 Serra Mall, Stanford, CA 94305
pgarzon@stanford.edu

Abstract

For the Yelp Image Classification Kaggle Challenge, we
use a modified VGGNet to make predictions on 9 specific
attributes of restaurants based on images by performing
transfer learning. We explore two approaches to making
these predictions: a naive model that assigns the attributes
of the restaurant to each picture, and a more sophisticated
method called multiple instance learning. With our naive
model, we achieved a mean F1 score of 0.533, while our
MIL model achieved a mean F1 score of 0.618. We then
explore and evaluate other past methods attempted for this
challenge and note various methods of improvement on our
current models.

1. Introduction

We will be attempting to classify restaurants based on
images that various Yelp users have posted. Yelp is always
looking for ways to use the pictures people post effectively,
and now based on these pictures, it is possible to assign at-
tributes to various restaurants. Essentially, this means using
business images to automatically capture metadata. This is
useful because it allows Yelp to make better recommenda-
tions to users about which restaurants they might like by
having less manual text input from the user. Our plan in-
volves a Convolutional Neural Network (CNN) in the form
of a modified VGGNet pretrained on ImageNet dataset. We
then perform transfer learning using the dataset provided by
Yelp of its various restaurants and introduce a custom use of
Multiple-Instance Learning for the challenge.

We are trying to predict attribute labels for restaurants
based on user-submitted photo; this is a variant of the im-
age object detection problem since we’d like to take note
of multiple objects that might indicate a high likelihood of
having a certain attribute. The attributes consist of: Good
for Lunch, Good for Dinner, Takes Reservations, Outdoor
Seating, Restaurant is Expensive, Has Alcohol, Has Table

Service, Ambiance is Classy, Good For Kids. Each restau-
rant has an arbitrary number of photos associated with it,
and can be assigned multiple attributes. Our problem in-
volves looking at the pictures associated with a restaurant
and using them to assign attributes. Another added chal-
lenge is the subjectivity of the material since even human
readers could differently label an image for the given at-
tributes. We will present the approach of tackling the prob-
lem by training a convolutional neural network to do the
full prediction from input to output. We’ll be giving as in-
put batches, or in our terminology ”bags”, that correspond
to each business and attempt prediction and training on a
business given a bag of photos. Our output is a 9-label bi-
nary classification.

2. Previous Work and Background

The state of the art in CNNs gets pushed ever so slightly
with each passing year with more complicated and compu-
tationally demanding models. As of now, the leading model
for the ImageNet Challenge is the Inception-v4 model ar-
chitecture that was able to achieve 3.08% top error on the
ImageNet challenge by using 75 trainable layers [12], beat-
ing out the ResNet and GoogleNet that were the previous
reigning champs in image classification. However, the main
drawback of latest state of the art is ever increasing train-
time to get the models to convergence. The model that has
been widely used in the past two years for application prob-
lems has been the VGGNet architecture, which won the Im-
ageNet Challenge in 2014. It benefits from having less lay-
ers than the current state-of-the-art while still having signif-
icantly good with an error of 7.3% on accuracy [11]. VG-
GNet models are also widely distributed on the Internet for
various deep learning frameworks, making it an ideal CNN
model to start out with.

The original blog post announcing the Yelp Challenge
gave some initial results as well. All proceeding measures
of accuracy will be based on Mean F1 Score. A complete
random guess giving each label equal probability gave an

4321



accuracy of 43.5%. A better approach using color distribu-
tion and compares the color distribution for each image in
comparison to the average of color distributions for images
had the label marked as positive or negative. This gave an
accuracy of 64.6% [14].

User uploaded submission scripts shared on the Kaggle
site provided more insight and understanding to the chal-
lenge. For instance, the total average number of labels per
of picture in the training set is 4, and predicting labels with
means in proportion to each class can give a baseline re-
sult of 60.9% accuracy on the test set [5]. This simple ap-
proach without any machine learning will serve as our base-
line comparison to improve on with our CNN model.

Evidence that CNNs could prove useful for the problem
come from a Kaggle script that uses a CNN as a feature
extractor. Here, a deep CaffeNet model was used as a fea-
ture extractor for the training images. An SVM was then
later trained using the features extracted from the SVM to
achieve an accuracy of 76% on the test set [4]. t-SNE fea-
ture visualizations from these CNN features show a 2D rep-
resentation of the distance in features between multiple in-
stances [6]. This SVM based submission passed each im-
age of a business to get its features and then used SimpleMI
Multiple Instance Learning on the average of the feature
vectors for each business [4]. Although CNNs are generally
used as a full pipe-line for classification, research has shown
that using deep CNNs as feature extractors and SVMs as
classifiers tends to give similar results to a well-trained clas-
sification layer within the CNN architecture itself. Thus, it
seems that perhaps a well-trained neural net should be able
to at least reach an accuracy of 76% on the Yelp dataset.

However, this SVM use of a CNN didn’t involve directly
training on a CNN so that it could be fine-tuned for the spe-
cific task of classifying the 9 labels desired in the challenge.
Exploring this space gives us our trial approach that will
attempt to have an end-to-end pipeline using a fine-tuned
CNN trained on the Yelp data itself.

The most state of the art approach that could be applied
to understanding several objects in the Yelp data is the use
of faster-rCNN region proposals. This technique uses a neu-
ral net to learn region proposals and then detect objects ac-
cordingly to those regions. This proves exceptionally well
for understanding multiple objects in the same image and
keeping track of where they occur spatially. This method
has yielded a mean average precision of 58.85% on the
ImageNet object detection challenge [10]. Another tech-
nique like YOLO (You Only Look Once), which formu-
lates object detection as a regression problem, is also ca-
pable of tackling object detection even though in practice
it performs slightly worse than faster-rCNN [9]. However,
training these architecture requires very specifically labeled
datasets that have every object of interest labeled. Leverag-
ing these models would require us to do additional separate

labeling on the Yelp data to make these effective.

Fig 1. t-SNE Plot of Expensive Images [4]

Fig 2. t-SNE Plot of Lunch Images [4]

2.1. Multiple Instance Learning

Another significant aspect of solving this problem in-
volves the concept of multiple instance learning. The de-
tails of multiple instance learning (MIL) are provided later
in Section 5.4, but essentially it is a learning technique that
is useful when individual training examples do not have la-
bels themselves, but attributes are assigned to bags of labels

4322



instead. MIL has proven very successful in the past. For
example, in a paper by Babenko et al.[1], MIL is used for
solving a Visual Tracking problem. Their main goal was to
show that MIL resulted in more stable and accurate track-
ing models relative to the existing models in literature at
the time. They presented a novel algorithm, in addition to
a novel loss function, that they used to train their models
to perform online MIL classification. The loss function it-
self was crafted artfully, as it took into account the gradient
boosting framework detailed in another paper, Viola et al.
[8], to maximize the log-likelihood function across several
bags of instances.

Another notable paper that detailed MIL is Jia et al. [13],
specifically in its formulation of the loss function. The loss
function in this paper still calculates the loss across bags of
instances rather than separately calculating the loss of each
instance individually, but it uses a more intuitive method to
take the true label of the bag into account, essentially formu-
lating a different loss function for positive bags as opposed
to negative bags. While these different loss functions lead to
a discrepancy in the magnitudes between positive bag losses
and negative bag losses, they cleverly weight them appro-
priately so that the final loss is still a within a reasonable
range.

2.2. Transfer Learning

Within the field of Convolutional Neural Networks, there
has been a lot of work done with Transfer Learning. Trans-
fer learning is useful when one wants to train a CNN on
their own dataset, but for various reasons, the dataset may
not be adequate to train a full neural net on (i.e. it could
be too small). While data augmentation is a viable option
in a lot of cases, transfer learning has also proven effective.
Transfer learning refers to the process of taking a pretrained
CNN, replacing the fully-connected layers (and potentially
the last convolutional layer), and training those layers on the
pertinent dataset. By freezing the weights of the convolu-
tional layers, the deep CNN can still extract general image
features such as edges, while the fully connected layers can
take this information and use it to classify the data in a way
that is pertinent to the problem. In practice, when there is a
moderate amount of data, transfer learning is performed on
the last fully-connected layer and classification layer with a
learning rate 1/100th of the value used to get the model to
converge when first trained on ImageNet.

3. Approach
3.1. Dataset

The training dataset consists of about 234,842 images,
all of which belong to one of about 2000 businesses. The
dataset was specifically procured for this particular task and
is based off a real life scrape of Yelp data. This means that

the data is subject to noise and incorrect classification as
mentioned in challenge page. The test set is similar and
contains 237,152 images. CSV files denote which images
correspond to which businesses and the

0- good-for-lunch
1- good-for-dinner

2- takes-reservations
3- outdoor-seating

5- has-alcohol
6- has-table-service

7- Ambiance-is-classy
8- good-for-kids

Fig. 3 A Representative Sample of the Data

Regarding dividing the dataset up into train-
ing/validation/test sets, we divide our dataset by businesses,
rather than pictures. Therefore, the exact size of the training
and validation sets are not well-defined, as a business could
have an arbitrary number of pictures. For the purposes of
this people, we keep a validation set of 100 businesses.

3.2. Preprocessing

Since we attempt to a VGGNet like architecture and have
a decent amount of training data, we do the same prepro-
cessing as performed in the VGGNet paper. This simply
invovled applying normalization by subtracting the mean
of all images from each image. Additionally, since pho-
tos came in varying sizes and resolutions, we used OpenCV
to rescale each image to 224x224x3 so that its dimensions
correspond to the original VGGNet input requirements.

3.3. Single Instance Graph Model(Baseline)

For initial experimentation, we created a graph model
CNN based on the VGGNet architecture. In order to use
the features of the pre-trained VGGNet, we remove the final
softmax classifier and substitute that in for 9 independent,
single-neuron fully connected layers and apply a sigmoid
activation. These new layers receive the input of the last
fully connected layer in the original VGGNet. The output

4323



of these 9 layers gives a single scalar between 0 and 1 that
we then merge together to make the prediction vector for a
given image.
For a given single-neuron layer, the sigmoid activation is
calculated as follows, where s is the score of the example
prior to applying the sigmoid activation:

σ(s) =
1

1 + e−s

We clip at values of 0.95 to set a label as positive. For the
rest of the experiments, we define a negative classification
as 0, and a positive classification as 1. An example output
vector for a given training example would look as follows:

[0, 1, 1, 0, 1, 0, 0, 1, 0]

As an initial start, we trained this model on single in-
stances using cross-entropy loss on the output, Adam up-
date function, an initial learning rate of 1e − 9, and 100k
examples for 10 epochs. The learning rate was then reduced
to 1e−7 after it was noticed that little reduction in loss con-
tinued. We chose an initial learning rate of 1e − 7 since it
matches the recommendation of 1/100th of the learning rate
of the original VGGNet. It took approximately 14 hours to
train. We call this general architecture ”YelpNet”.

Fig 4. Our used CNN Architecture

3.4. Multiple Instance Learning Detail

A particular quirk about this problem is that we have sev-
eral images per business, where each business is assigned a
training label. However, this does not directly translate well
to a standard convolutional neural network model, simply
because we cannot directly assign training labels to each
image. In our initial baseline approach with separate mod-
els and our first true attempt at using a single, multi-output
model, each image was assigned all of the training labels
of the business that it corresponded to. This does not nec-
essarily train the model very accurately, because a business
could be assigned the attribute ”Classy”, and have a picture
of its bathroom; while the bathroom itself does not reflect
the classiness of the restaurant, the picture would still train
the model to think that pictures of bathrooms may correlate
to the classiness of the restaurant.

To combat this issue, we look at the concept first refer-
enced in Viola et. al[8] called Multiple Instance Learning.
Effectively, Multiple Instance Learning is required where
training examples themselves do not have training labels,
but are put into bags where each bag has a training label.
This is directly relevant to the problem we are trying to
solve. Multiple Instance learning works by taking a ”Noisy-
OR” across all of the examples in a bag, and uses the result
of that to classify the bag itself.

We index bags with i, where the ith bag is denoted asXi

and the label associated with bag Xi is known as yi. Each
training example in bag Xi can be denoted as xij .

When xij is passed through the model, we take the out-
put from the final fully connected layer as the score of the
training example, ŷij .

Our model that uses MIL is identical to our single in-
stance model besides how the loss is calculated and the
batch size of images we input into the CNN.

3.5. Loss Function

Formulating the loss function for a multiple instance
learning problem is not as direct as that of a normal machine
learning problem. This is mainly because the loss attributed
to each example is not very clear, as a particular example in
a bag need not reflect a particular attribute of the bag (as de-
tailed earlier in the MIL section). Instead, we compute the
loss function over an entire bag of training examples as op-
posed to each example. For semantic reasons, we must still
provide a loss for each example in a bag (such is demanded
by the Keras API); for simplicity, we attribute the loss of
the entire bag to each example. Here, we denote a restau-
rant as a bag, and the pictures associated with restaurant as
the individual training examples. Also, given that this is a
multiple task classification problem, to calculate the total
loss, we sum together all of the losses that are all computed
with respect to each attribute. Before formally describing
the loss function, we define some important terms.

• Let Ltotal,i be the total loss due to bag i

• Let Lai be the loss of a bag i with respect to attribute
a

• Let training example j in bag i be denoted as xij

• Let the soft-label prediction of example xij with re-
spect to attribute a be denoted as ŷija

Ltotal,i =

class∑
a=1

Lai

4324



For a restaurant i whose label is negative for attribute a, we
describe the loss with respect to bag i as follows:

Lai =
∑
j

(ŷija)
2

For a restaurant i whose label is positive for attribute a, we
describe the loss with respect to bag i as follows:

Lai =
∑
j

(ŷija − 1)2

Intuitively, for positively classified bags, this loss function
assigns a high loss to examples classified negatively, and
low loss to examples classified positively; similarly, for neg-
atively classified bags, this loss assigns a low loss to exam-
ples classified negatively, and a high loss to examples clas-
sified positively.

This could be extended to something more sophisticated
as detailed in Jia et al.[13], which makes use of a Lapla-
cian matrix to help regularize the loss function, in addition
to modifying the basic approach above. For negatively clas-
sified bags, the approach is the same. However, for positive
bags, instead of assigning a loss to all negatively classified
examples, they only attribute a loss to the example with the
highest classification. Intuitively, what that does is that if
a bag is labeled negative for a particular attribute, none of
the examples should reflect that attribute; however, if a bag
is labeled positive, then only one of them needs to strongly
reflect that attribute in order for the bag to be classified as
such. Therefore, they should only assign a high loss to a
positively classified bag if even the most ”positive” exam-
ple is still negative.
Inspiration for our custom loss function was derived from
Jia et al.[13] and Babenko et al.[1].

3.6. Technical Limitations

Due to the nature of multiple instance learning and
specifically formulating the loss function, it is necessary
that all training examples of a particular bag (restaurant)
be batched together. Therefore, a minibatch paradigm can-
not be used. However, with this particular problem, some
restaurants have on the order of 400 to 500 images; with
the limited computation power that an AWS GPU instance
provides, the maximum batch size possible is 64 images.
This prevents looking at the whole bag of examples at a
time while training, but for the purposes of this paper, we
can somewhat approximate the full-batch technique. Dur-
ing training, for a bag Xi, we split its examples xij into
bags of size 64, and treat the new bags’ attributes as those
of the old bag. This allows us to mimic looking at the full
batch of examples as well as possible with limited compu-
tation power. We are also limited in adding more layers as
part of the 9 branches since the VGG-19 model pushes us

to use most of the memory. Since we want to use as many
business photos per batch as possible, we did not experi-
ment with adding more layers per branch.

3.7. Classifying Bags based on Examples

With multiple instance learning, we cannot evaluate the
accuracy by looking at each example, but instead by look-
ing at the classification of the entire bag of examples. First,
we detail two distinct ways of obtaining the classification
of a bag Xi given the examples xij and their corresponding
soft-label predictions ŷija. Let the prior definitions of
variables apply, adding Ŷai as the prediction for bag Xi for
attribute a.

3.7.1 Classification Method 1

The first method involves the following procedure:

Ŷai = maxj(ŷija)

If Ŷai is greater than some constant γ, then predict 1 for
attribute a. In this case, γ = 0.9

3.7.2 Classification Method 2

The second is as follows:

• First clip all predictions above a constant α to 1 and
clip the rest to 0. Call the clipped version of ŷija as
cija.

• α was set to 0.8

tai =
∑
j

(cija)

• Assign Yai = 1 if tai > N
β , where N is the total num-

ber of examples in bag Xi and β is an integer value
that intuitively represents the proportion of examples
in a bag that must classify as positive in order for the
bag to be classified as positive with respect to that at-
tribute

3.8. Performance Metric

Since we are deviating from standard single label object
classification, we use a different measure of accuracy as op-
posed to the standard total labels correct over the amount of
test examples. To evaluate performance, we use the Mean-
F1 score. Mean-F1 functions as an effective metric since
it takes into account both precision and recall. Precision in
this case is all true positives over true positives plus false
positives. Recall is a ration determining how many of the

4325



right labels we caught. Formally, recall is the ratio of true
positives to all actual positives. Below p is precision, r is re-
call, tp is true positives, fp is false positives, and fn is false
negatives. Mean-F1 score poses as a valid accuracy metric
since it entails maximizing both precision and recall as op-
posed to one individually [7]. Essentially, this allows met-
ric measures consistently correct predictions and capturing
as many true positives as possible. F1 scores are generally
used in measuring accuracy on queries and classifications in
the Natural Language Processing space.
F1 = 2 pr

p+r where p = tp
tp+fp , r =

tp
tp+fn

3.9. Results

We evaluated both our naive model that does not perform
Multiple Instance Learning and our model that does. From
now on, we will refer to the prior model as the naive model,
and the latter as the MIL model.

The following is a graph of the loss function while train-
ing our MIL model for 12 epochs, where each epoch looked
at 80,000 training examples; the learning rate was 1 ∗ 10−8

on an Adam update, the batch size was 64 (due to techni-
cal limitations), and Adam parameters were beta1 = 0.9,
beta2 = 0.999, epsilon = 1e − 08. For visualization pur-
poses, we have only plotted 200 points for each epoch to
provide a representative view of the loss function.

Fig. 6 Training Loss Over Iterations for the MIL Model

To evaluate our model, we calculated the Mean-F1 score
across a validation set of 100 businesses, that achieved
mean-F1 Score of:

F1 = 0.618

Fig. 7 Validation Accuracy vs. Epochs

Compared to the naive model, our MIL model performed
better by a non-negligible amount, indicating the effective-
ness of Multiple Instance Learning compared to naively
approaching this problem as single instance classification.

Because this project was inspired by a Kaggle challenge,
we acquired the results of other methods of classification
and compared those with our results.

Fig. 5 Accuracies for Different Model Approaches

Experimentation was also necessary for the classifi-
cation strategies. Earlier we detailed two classification
strategies, both of which looked at the classification of
all examples in the bag and took some combination of
them to classify the bag. Experimentation with both of
these methods (Section 5.7.1 and Section 5.7.2) led us to
realize that the first gave us more accurate predictions. This
intuitively makes sense, as the second classification strategy
takes the prediction of all examples in a bag and checks
whether a certain number of examples depict that attribute.
However, in practice, only one picture that heavily depicts
that attribute needs to exist in the batch in order for the bag
to likely reflect that attribute. For example, if a restaurant
served alcohol, and only one of the pictures had a glass of

4326



beer in the frame, it would still provide adequate evidence
that this restaurant served alcohol. We achieved the highest
accuracy on our validation set with the former method. The
only caveat with using the former method, however, was
that by taking the maximum classification value ŷij across
all instances in a bag, the resulting value would inherently
be very large, regardless of the classification of the bag.
This required adjusting the threshold value at which we
clipped the prediction to the space {0, 1}.
Below is a table of different clipping thresholds and their
corresponding Mean-F1 scores. These were evaluated on a
randomly-sampled 100-business training set in addition to
a 100-business validation set.

Fig 6. F1 scores for Different Threshold Clippings

4. Discussion

4.1. Algorithm

An instant challenge in using a VGGNet model for the
Yelp problem was modifying its functional use for multi-
label classification in batches. Predicting multiple labels for
an image is a fairly used extension of single object recogni-
tion which can involve training so that the output gives the
top k labels. What proved to be a significant part of experi-
mentation for us is determining a way to adequately adopt a
CNN to process images by batch. The added technical chal-
lenge stems from the fact that each business tends to have
hundreds of examples that have the set of labels that cor-
respond to that business. These pictures tend to have high
amount of variation in their content. For instance, the same
business could have several pictures of the same pasta dish,
have a few of a takeout pizza box, or selfie of a couple on
a date. Thus, the classification could not be easily done by
just looking on single instances as separate cases. We have
to make predictions accordingly as a batch by all photos for
a given business, which was somewhat fixed by using Mul-
tiple Instance Learning

4.2. Dataset

Another significant challenge for our algorithm to over-
come came from general noise in the dataset. A manual run
through of the data shows that there are several noisy im-
ages that don’t pertain to the food, drink, or ambiance of a
business. There could be pictures of the storefront, the view
outside the window, parking lots, or group photos. Thus, a
technique that processes all photos of a business at once at
training would also need to be very resistant to the variation
in object that would help in classification along with resis-
tance to the general noise of objects that can confuse in the
classification task. To make the task even more difficult, the
dataset contains several duplicates due to users uploading
the same photo multiple times and chain business upload-
ing the same photos to each location of the same business.

Another problem was that predicting one of the 9 labels
is a classification problem that might fall more in the lines
of object detection by regions to extract the multiple objects
in a picture. For instance, a picture of place that’s good
for dinner should be highly activated if there’s wine, fancy
food, and fancy plates. It would be ideal to have an explicit
understanding of all pertinent items such as these.

In the context of transfer learning, we also need to note
the difference between the ImageNet dataset and the Yelp
dataset. Although both pertain to real-world objects, the
Yelp dataset tended to have a more narrow range of objects.
For instance, we expect scenes of within a restaurant and
it’s surrounding area. Intuitively, it doesn’t make sense to
have an understanding of unrelated objects such as moun-
tain lions. Instead, we want our net to be more sensitive to
objects that pertain to the restaurant space and to be able to
make fine distinctions between such objects. For instance,
an upscale and expensive Italian restaurant might also offer
pizza, but the attributes for this restaurant would vary from
a take-out pizza chain. Thus, training a CNN from scratch
for this task might be able to make fine-grain distinction.

4.3. Choice of Hyperparameters

The learning rate was calculated based on VGG-19’s
original learning rate and the fact that we were performing
transfer learning. As mentioned earlier, in transfer learning,
it is necessary to decrease the magnitude of your learning
rate by a couple orders in order for it to actually fine tune
the model. Though our original learning rate was 1 ∗ 10−8

at the end, in order to see the effects of fine-tuning even
more, we took our 12-epoch trained MIL model discussed
in our results section and trained it for 6 more epochs, but
this time with a learning rate of 1∗10−9. With fine tuning a
model, it is important to decay the learning rate as the loss
function begins to converge; by decaying the learning rate,
we can intuitively reach the ”crevices” of the loss function
that were unreachable with higher learning rates. Below is
a graph of the loss function:

4327



Fig. 7 Training Loss Over Extra Iterations

The choice of using Adam as our optimizer was sim-
ply because it has yielded some very positive results re-
cently and has been known to converge faster than Vanilla-
SGD and other popular optimizing techniques. The Adam-
specific hyperparameters β1, β2, εwere chosen based on the
recommended standard by the Keras API.
Another important hyperparameter is the minibatch size;
while MIL requires a somewhat ”full-batch” approach, the
batch size is not very well defined. However, technical lim-
itations prevented us from using a batch size of larger than
64.

5. Conclusion
The main takeaway of is that our results tend to fall close

to the baseline result of making results by the distribution
of data. This approach looks at how on average 5 labels
are chosen and that those labels tend to be labels 2, 3, 5, 6,
8. A quick observation of our actual output show that our
results tend match this sort of prediction scheme. The net
tended to highly misclassify businesses that had fewer than
5 attributes. Thus, it appears that our CNN was not working
well in terms of extracting a fine amount of detail from the
VGG-extracted features. Instead, it seems that our branch-
ing layers we trained on were only getting an average result.
In fact, just by arbitrarily predicting that a restaurant exhib-
ited attributes 2, 3, 5, 6, and 8, we achieved an accuracy of
about

F1 = 0.658

That shows that the dataset did not cover a broad enough
range of examples, and due to this lack of diversity, it is
possible that the model could easily overfit the training data.
However, this is not necessarily a bad thing. If we take a
closer look, attributes 2, 3, 5, 6, and 8 (refer to Section
5.1 for exact mappings) intuitively would appear in most
restaurants, and so even if our model was more likely to pre-
dict those by seeing more of those examples, it would still

produce reasonable results in the context of the problem,
as most of the restaurants in the test dataset would exhibit
these same features.

Despite this flaw in the dataset, it is still to overcome be-
ing limited by only viewing the averages in the data, and
so a model must be able to make finer-grain understand-
ing about images and the objects they contain. An observa-
tion of the t-SNE figures in Fig 1. shows a decently wide
amount of variation even within photos strongly signal the
same attributes. There’s a wide range of foods, lighting,
plates, silverware, and other miscellaneous objects related
to a restaurant setting. Thus, it appears that what is needed
is not a generic image classifier but instead a model that
more tightly fits the scenarios presented in the data. Achiev-
ing this would require a more robust dataset and adjusting
the size of the model, as well as adjusting the learning rate
and other update parameters.

5.1. Future Extensions

There are quite a few areas of further investigation that
might prove worthwhile in improving the results of this ar-
chitecture. More time could be spent in fine tuning the
learning rate to see if that’s a source of low accuracy. Ad-
ditionally, one could train on a more powerful machine that
would address the technical limitations we faced so that one
could train by batch on all of a business’ images. One could
also transfer learn on another dataset, such as Food-101 [3],
which labels 101 classes of food and contains Yelp-like user
uploaded photographs of dishes. This could aid in teach-
ing the net how to make finer distinctions between culinary
items.

Outside of transfer learning all together, one could of
course train a CNN from scratch only using the Yelp dataset.
A motivation for this is that VGGNet extracts features for
1,000 different objects, many of which, are not particularly
relevant to our problem. For instance, being able to distin-
guish several breeds of felines or dogs is frivolous to under-
standing restaurants. Instead, it would be ideal to have a net
only focus on the features that really matter in a restaurant
business setting.

A more complex could involve transferring the problem
into an object detection problem as opposed to image clas-
sification. A faster rCNN-like approach could be applied so
that the net has more regional understanding of multiple ob-
jects as opposed to trying to extract just one meaning from
the photo. This would aid in being able to distinguish cups,
plates, food, tables, chairs, and other objects at a more spe-
cific level by applying self learned region proposals [10].

References

[1] B. Babenko, M. H. Yuan, S. Belongie. Visual Tracking
with Online Multiple Instance Learning.

4328



[2] B. Baben, M. Yang,, & Belongie, S. (2009). Visual tracking
with online Multiple Instance Learning. 2009 IEEE Conference
on Computer Vision and Pattern Recognition.

[3] L. Bossard, M. Guillaumin Van Gool, and L. Van Gool
(2014). Food-101 – Mining Discriminative Components with
Random Forests. European Conference on Computer Vision.

[4] N. Chen,(2016, February 28). Deep learning starter code.
Retrieved March 8, 2016, from https://www.kaggle.com/c/yelp-
restaurant-photo-classification/forums/t/19206/deep-learning-
starter-code

[5] JP smasher. (2016, February 9). Naive
Benchmark (0.61). Retrieved March 08, 2016, from
https://www.kaggle.com/wongjingping/yelp-restaurant-photo-
classification/naive-benchmark-0-61

[6] L.J.P. van der Maaten. Accelerating t-SNE using Tree-
Based Algorithms. Journal of Machine Learning Research
15(Oct):3221-3245, 2014.

[7] ”Mean F Score. (n.d.). Retrieved March 09, 2016, from
https://www.kaggle.com/wiki/MeanFScore

[8] P. Viola, J. C. Platt, C. Zhang. Multiple Instance Boosting
for Object Detection. In NIPS, 2005.

[9] ”Redmon et al, You Only Look Once: Unified, Real-Time
Object Detection, arXiv 2015”

[10] S. Ren, K.He, R. Girshick, and J. Sun,(2016). Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. ArXiv.

[11] K. Simonyan and A. Zisserman (2014). Very Deep
Convolutional Networks for Large-Scale Image Recognition.
CoRR.

[12] C.Szegedy, S. Ioffe, and V. Vanhoucke (2016). Inception-
v4, Inception-ResNet and the Impact of Residual Connections on
Learning. ArXiv.

[13] Y. Jia and C. Zhang. Instance-level Semi-supervised
Multiple Instance Learning.

[14] Y., D. (2015, December 23). Introducing the Yelp
Restaurant Photo Classification Challenge. Retrieved March
08, 2016, from http://engineeringblog.yelp.com/2015/12/yelp-
restaurant-photo-classification-kaggle.html

4329


