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Abstract

This paper focuses on the problem of gender and age
classification for an image. I build off of previous work [12]
that has developed efficient, accurate architectures for these
tasks and aim to extend their approaches in order to im-
prove results. The first main area of experimentation in this
project is modifying some previously published, effective ar-
chitectures used for gender and age classification [12]. My
attempts include reducing the number of parameters (in the
style of [19]), increasing the depth of the network, and mod-
ifying the level of dropout used. These modifications actu-
ally ended up causing system performance to decrease (or
at best, stay the same) as compared with the simpler ar-
chitecture I began with. This verified suspicions I had that
the tasks of age and gender classification are more prone to
over-fitting than other types of classification.

The next facet of my project focuses on coupling the
architectures for age and gender recognition to take ad-
vantage of the gender-specific age characteristics and age-
specific gender characteristics inherent to images. This
stemmed from the observation that gender classification is
an inherently easier task than age classification, due to both
the fewer number of potential classes and the more promi-
nent intra-gender facial variations. By training different
age classifiers for each gender I found that I could improve
the performance of age classification, although gender clas-
sification did not see any significant gains.

1. Introduction

Over the last decade, the rate of image uploads to the
Internet has grown at a nearly exponential rate. This new-
found wealth of data has empowered computer scientists
to tackle problems in computer vision that were previously
either irrelevant or intractable. Consequently, we have wit-
nessed the dawn of highly accurate and efficient facial de-
tection frameworks that leverage convolutional neural net-
works under the hood. Applications for these systems in-

clude everything from suggesting who to “tag” in Facebook
photos to pedestrian detection in self-driving cars. However
the next major step to take building off of this work is to ask
not only how many faces are in a picture and where they are,
but also what characteristics do those faces have. The goal
of this project do exactly that by attempting to classify the
age and gender of the faces in an image.

Applications for this technology have a broad scope and
the potential to make a large impact. For example, many
languages have distinct words to be used when addressing a
male versus a female or an elder versus a youth. Therefore
automated translation services and other forms of speech
generation can factor in gender and age classification of
subjects to improve their performance. Also, having an idea
about the age and gender of a subject makes the task of
recognizing that subject significantly easier. This could be
used to aid assisted vision devices for those with deterio-
rating, or lost, eyesight. Social media websites like Face-
book could use the information about the age and gender of
the people to better infer the context of the image. For ex-
ample, if a picture contains many people studying together,
Facebook might be able to caption the scene with “study
session.” However if it can also detect that the people are
all men in their early 20s and that some are wearing shirts
with the same letters, it may predict “College students in a
fraternity studying.”

Age and gender classification is an inherently challeng-
ing problem though, more so than many other tasks in com-
puter vision. The main reason for this discrepancy in dif-
ficulty lies in the nature of the data that is needed to train
these types of systems. While general object classifica-
tion tasks can often have access to hundreds of thousands,
or even millions, of images for training, datasets with age
and/or gender labels are considerably smaller in size, typi-
cally numbering in the thousands or, at best, tens of thou-
sands. The reason for this is that in order to have labels
for such images we need access to the personal informa-
tion of the subjects in the images. Namely we would need
their date of birth and gender, and particularly the date of
birth is a rarely released piece of information. Therefore,
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we must make do with the nature of this problem we are ap-
proaching and tailor network architectures and algorithmic
approaches to cope with these limitations. These reasons
are the primary motivation behind [12] choosing to imple-
ment a relatively shallow architecture for age and gender
classification using convolutional neural networks, and we
have followed this pattern.

The input to my algorithm is an image of a human face of
size 256x256 that is then cropped to 227x227 and fed into
either the age classifier, gender classifier or both. The age
classifier returns a integer representing the age range of the
individual. There are 8 possible age ranges (see Section 4),
so the age classifier returns an integer between 0 and 7. The
gender classifier returns a binary result where 0 indicates
male and 1 represents female.

2. Related Work
The areas of age and gender classification have been

studied for decades. Various different approaches have been
taken over the years to tackle this problem, with varying
levels of success. Some of the recent age classification ap-
proaches are surveyed in detail in [3]. Very early attempts
[10] focused on the identification of manually tuned facial
features and used differences in these features’ dimensions
and ratios as signs of varying age. The features of inter-
est in this approach included the size of the eyes, mouth,
ears, and the distances between them. While some early
attempts have shown fairly high accuracies on constrained
input images (near ideal lighting, angle, and visibility), few
[2] have attempted to address the difficulties that arise from
real-world variations in picture quality/clarity.

A holistic overview of methods applied to gender clas-
sification can be found in [14]. As early as 1990, neural
networks were considered for the purposes of gender clas-
sification in [4] (which has perhaps one of the most inter-
esting paper names in all of computer vision). Later on in
the early 2000s, [16] used support vector machines (SVMs)
and found they could achieve very low error rates on gender
prediction of “thumbnail images” of subjects which were
of very low resolution. Yet again though, none of these at-
tempts seemed to acknowledge that the constrained settings
of their training and test data hindered their systems from
achieving equally impressive performance numbers in real-
world applications where images can be subject to altered
lighting, tilt, focus, occlusion, etc.

Virtually all of these papers, and their corresponding
methods, tackle either age classification (in some cases re-
gression) or gender classification, but usually not both. But
in 2015, [12] broke this norm by developing one methodol-
ogy and architecture to address both age and gender. Fur-
thermore, the authors address the undeniable reality that im-
ages taken in real-world settings are not perfectly aligned,
lit, or centered. To that end, they train on images from

a wide range of angles, lighting conditions, etc., and they
oversample the input images to the classifier to consider var-
ious regions in the image for classification.

Their focus on using deep convolutional neural networks
(CNNs), follows a pattern in the computer vision commu-
nity as CNNs are shown more and more to provide unpar-
alleled performance for other types of image classification.
The first application of CNNs was the LeNet-5, as described
in [11]. However deeper architectures in the early 1990s
were infeasible due to the state of hardware performance
and cost. In recent years, with the dawn of never-before-
seen fast and cheap compute, [9] revived the interest in
CNNs showing that deep architectures are now both fea-
sible and effective, and [19] continued to increase the depth
of such networks to show even better performance. There-
fore the authors of [12] leveraged these advances to build a
powerful network that showed state-of-the-art performance.
They advocate for a relatively shallow network, however,
in order to prevent over-fitting the relatively small dataset
they were operating on. Deeper networks, although gen-
erally more expressive, also have a greater tendency to fit
noise in the data. So while [19] shows improved perfor-
mance with deeper architectures training on millions of im-
ages, [12] shows improvements for shallower architectures
for their use case.

I aim to show that I can build off of this prior work, par-
ticularly the work in [12], to develop a system that leverages
the inherent inter-relationships between age and gender to
link these architectures in such a way as to improve overall
performance.

3. Methods
3.1. Network Architecture

The network architecture used throughout my project is
based off of the work in [12]. As mentioned toward the end
of Section 2, this network design is intended to be relatively
shallow so as to prevent over-fitting the data. Figure 1 visu-
alizes the network, which is explained below.

An RGB image being input to the network is first scaled
to 3x256x256 and then cropped to 3x227x227. The types
of cropping are described further in Section 3.2. There are
3 convolution layers, followed by 3 fully connected layers.
The convolution layers are

1. Conv1- 96 filters of size 3x7x7 are convolved with
stride 4 and padding 0, resulting in an output volume
size of 96x56x56. This is followed by a ReLU, max-
pooling pooling which reduces the size to 96x28x28,
and a local-response normalization (LRN).

2. Conv2- 256 filters of size 96x5x5 are convolved with
stride 1 and padding 2, resulting in an output vol-
ume size of 256x28x28. This is also followed by a
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Figure 1. Network architecture, as described in Section 3.1

ReLU, max-pool, and LRN, reducing the output size
to 256x14x14.

3. Conv3- 256 filters of size 256x3x3 are convolved with
stride 1 and padding 1, followed by a ReLU and max-
pool, resulting in an output volume of 256x7x7.

The fully connected layers are

1. FC6- 512 neurons fully connected to the 256x7x7 out-
put of Conv3, followed by a ReLU layer and dropout
layer.

2. FC7- 512 neurons fully connected to the 1x512 output
of FC6 followed by a ReLU layer and dropout layer.

3. FC8- 2 or 8 neurons fully connected to the 1x512 out-
put of FC7, yielding the un-normalized class scores for
either gender or age, respectively.

And finally there is a softmax layer that sits on top of FC8,
which gives the loss and final class probabilities.

3.2. Training and Testing

The authors of [12] split the images (as described in Sec-
tion 4) into 5 folds and then perform a subject-exclusive
cross-validation protocol, as first developed by [2]. The
reason this type of protocol is necessary is because of the
nature of the dataset being used, which contains multiple
pictures of the same subjects. Therefore if the images were
simply randomly shuffled and divided into fifths, the same
subjects could potentially appear in both the training and
test folds, thereby skewing the results to seem more promis-
ing than they are in reality. This protocol therefore ensures
that all the images of a given subject appear in a single fold
to avoid this issue.

For my project, I divided the dataset into 6 subject-
exclusive folds, but then further divided each of those folds
into males, females, and each of the 8 age groups. As de-
scribed in Section 3.3, this was necessary for the types of
classifiers I was aiming to build. This resulted in a total of
66 “sub-folds”, where each of the original 6 folds were bro-
ken up into 11 groups, based on the types of classifiers I
would be training. All of the sub-folds coming from the 6th
original fold were separated as test data, never to be trained
on or validated against. Then the remaining 5 folds, and
their sub-folds, were used for training, and cross-validation.
So if, for example, at a given time I was training a male age

classifier, I would use 4 of the male age sub-folds as the
training set and the 5th male age sub-fold as the validation
set. This would rotate between the first 5 sub-folds for every
possible assignment of the validation fold, and the resulting
classifier would be tested against the 6th (previously sepa-
rated) male age sub-fold.

This altered fold distinction I implemented prevented me
from being able to use the pretrained weights provided by
[12] because by construction their training folds could over-
lap with my test folds. At first I did not see this issue and
then initial experiments showed uncharacteristically high
accuracies that led to further investigation and the discov-
ery of this inherent problem.

Finally, [12] proposes 2 types of sampling of an input
image when being classified. One is to simply take a cen-
ter crop of 227x227 out of the 256x256 image and classify
that. The other is to take 5 such crops, one from each of
the corners and one from the center, classify them all, and
take the majority classification from between them. While
they found that the latter technique can improve accuracy
slightly, for the sake of reducing testing time, I used the
first approach for this project.

3.3. Goals

My first objective in this project was to determine if the
proposed network architecture (see Section 3.1) was indeed
optimal. Although the authors of [12] claimed that any
deeper network would suffer from over-fitting, I wanted
to verify this for myself. To this end I experimented with
adding additional convolution layers, removing fully con-
nected layers (in the style of [19]), and modifying the pa-
rameters used for dropout as well as LRN.

The primary goal, however, was to experiment with a
new higher-level approach for composing these classifiers
to improve performance. The observation I made early on
was that gender classification is an inherently easier task
than age classification, both due to the fewer number of
classes to distinguish between and the more marked differ-
ences that exist between genders than between many age
groups. This then led me to the conclusion that while it is
reasonable to assume one should be able to ascertain some-
ones gender apart from knowing their age, or vice versa,
there is also some plausibility of using one of these at-
tributes to better inform the prediction of the other. For ex-
ample, the amount of hair on a man’s head can often be a
useful indicator of age, but the same is not true for women.
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Furthermore, separating the tasks of classifying men’s
age and women’s age should, in theory, give the networks
more expressive power by freeing them from having to learn
a gender-neutral concept of age. Therefore, I proposed that
training separate age classifiers for men and women could
simulate the added power of deeper networks while avoid-
ing the danger of over-fitting.

3.4. Technical Details

In this section, I elaborate on some of the technical
details of the network architecture and how it is trained.

Local Response Normalization (LRN). After the first
2 pooling layers, there are local response normalization
(LRN) layers. LRN is a technique that was first introduced
in [9] as a way to help the generalization of deep CNNs. The
idea behind it is to introduce lateral inhibition between the
various filters in a given convolution by making them “com-
pete” for large activations over a given segment of their in-
put. Effectively this prevents repeated recording of the same
information in slightly different forms between various ker-
nels looking at the same input area and instead encourages
fewer, more prominent, activations in some for a given area.
If aix,y is the activation of a neuron by applying kernel i at
position (x, y), then it’s local response normalized activa-
tion bix,y is given by

bix,y = aix,y/

k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)
2

β

where k,n,α, and β are all hyper-parameters. The param-
eter n is the number of “adjacent” kernel maps (filters)
over which the LRN is run, and N is the total number
of kernels in that given layer. The values used for these
hyperparameters are the same as those used in [9].

Softmax. At the top of the proposed architecture lies a soft-
max layer, which computes the loss term that is optimized
during training and also the class probabilities during a clas-
sification. While some loss layers like multiclass SVM loss
treat the output of the final fully connected layer as the class
scores, softmax (also known as multinomial logistic regres-
sion) treats these scores as the unnormalized log probabil-
ities of the classes. That is, if we have zi is the score as-
signed to class i after the final fully connected layer, then
the softmax function is

fj(z) =
ezj∑
k e

zk

Because we want to maximize the log likelihood of the cor-
rect class, the term we want to minimize is the negative log

likelihood.

Li = −log(
efyi∑
j e
fj
)

Because the softmax function takes real-valued scores being
output from f and normalizes them by their exponentiated
sum, it guarantees that the sum of all softmax scores is 1,
thereby allowing it to be interpreted as a true class proba-
bility. It should be noted that the softmax loss is actually a
particular form of a cross-entropy loss. More specifically,
the cross-entropy between an actual distribution p and an
approximate distribution q is defined as

H(p, q) = −
∑
x

p(x)logq(x)

From this it can be seen that the softmax classifier is really
just minimizing the cross-entropy between the estimated
class probabilities and the real distribution, which would
look like 1 predicted for the actual class and 0 predicted for
everything else.

Stochastic Gradient Descent. Now that we know how to
calculate the loss, we need to know how to minimize it in
order to train an accurate classifier. The type of optimiza-
tion used in this experiment is stochastic gradient descent.
In order to explain this, first I will elaborate on the more
generalized form of gradient descent. The gradient of a
function is really just its derivative, and therefore by def-
inition it is the direction of steepest ascent (or descent if
you move backwards along it). Therefore if we compute
the gradient of the loss function with respect to all of the
system variables/weights (in CNNs there can be up to mil-
lions of these), we will have the direction along which we
can move toward our minimum loss most quickly by fol-
lowing the negative of the gradient. Each time we compute
the gradient we take a small step (governed by a hyperpa-
rameter) in the opposite direction, and we re-evaluate the
loss, re-compute the gradient, and repeat. The hope (and in
fact the reality) is that by repeating this process we will iter-
atively decrease our loss function, which is reflective of the
model becoming iteratively better at its classification task.
Mathematically, we can write this as

w = w − η∇wL

where η is the learning rate, also sometimes called the step
size and ∇wL is the gradient of the loss term with respect
to the weight vector w.

While this is theoretically great, the truth is that com-
puting the gradient across the entire training set in order to
make an incremental update to the weights is prohibitively
computationally expensive. Therefore alternate approaches
have been invented that evaluate the gradient of the loss
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function over a sample of the training data, and use that
approximate gradient to make the update. The reason this
gradient is approximate is that although it is the optimal di-
rection to travel down given the sample of images it was
computed over, there is no telling what kinds of images it
did not look at when computing the gradient. Therefore
making this form of mini-batch gradient descent, as it is
called, will still usually reach the minimum loss over time
(or at least a local minimum), but it will require many more
iterations on average. However the time it takes to evalu-
ate the gradient drops so dramatically when we operate on a
mini-batch that it is actually significantly faster to perform
many more mini-batch gradient updates than a few full gra-
dient updates. Finally, stochastic gradient descent is a spe-
cial form of gradient descent in which the mini-batch size
is 1. This is extremely fast to compute since it only requires
passing 1 image forward (to calculate the loss) and back-
ward (to calculate the gradient) through the network, but
the gradients are even less globally optimal than mini-batch
gradient descent, therefore a smaller step size is required at
each iteration and many more iterations are required.

4. Dataset
The dataset used for training and testing for this project is

the Adience face dataset, which comes from the Face Image
Project[12] from the Open University of Israel (OUI). This
dataset contains a total of 26,580 photos of 2,284 unique
subjects that are collected from Flickr. Each image is anno-
tated with the person’s gender and age-range (out of 8 pos-
sible ranges). The images are subject to various levels of
occlusion, lighting, and blur, which reflects real-world cir-
cumstances. I used those images which were mostly front
facing, which limited the total number of images to around
20,000. Table 1 includes details regarding the distribution
of images in each gender and age range. Figure 2 shows
some examples of images of both males and females in the
dataset of various ages. The images were originally of size
768x768, so they were preprocessed by all being resized
down to 256x256.

Figure 2. Adience image dataset examples. Top row: 6 males of
various ages. Bottom row: 6 females of various ages.

5. Experiments
The training and testing for this project were done exclu-

sively using Caffe [6], running on Amazon EC2 using be-

0-2 4-6 8-13 15-20 25-32 38-43 48-53 60+ Total
Male 745 928 934 734 2308 1294 392 442 8192
Female 682 1234 1360 919 2589 1056 433 427 9411
Both 1427 2162 2294 1653 4897 2350 825 869 19487
Table 1. Adience image dataset distribution. Number of images
for each gender and age range.

tween 1 and 3 instances at a time, each with 1,536 CUDA
cores and 4GB of video memory. As described in Sec-
tion 3.2, a 6-fold subject-exclusive cross validation protocol
was used to provide added robustness to the training, while
preserving the reliability of results. Although much of my
network architecture was built off of the work in [12], my
networks were trained from scratch without using any pre-
trained weights provided by that, or any other, project. The
reason for this had to do with the way that I divided up the
dataset for the purposes of my project (again, see Section
3.2 for more information).

The first step I took was to attempt to reproduce the re-
sults of [12] as a baseline since I had their network archi-
tecture and training data. I attempted to replicate their ex-
periment as closely as possible, so I also used SGD with
a learning rate of 1e-3 that decays by a factor of 10 ev-
ery 10,000 iterations and a batch size of 50 images. This
proved quickly successful, and within a few hours of train-
ing I reached accuracies that were very close to their re-
sults for both age and gender classification. These results
are recorded in Table 2. Note that their slightly higher ac-
curacies are likely due to the oversampling they do of the
input images followed by taking the majority classification
of the various samples. For the sake of faster iteration in my
model, I avoided this technique.

Age Gender
Benchmark [12] 50.7 85.9
My Baseline 50.2 80.8

Table 2. Initial benchmark. Classification accuracies achieved in
my benchmark paper [12] as compared to my initial numbers after
trying to reproduce their results.

Next, I wondered if their model could be improved upon.
Namely, after reading that the Adam learning algorithm[7]
can often provide improved convergence times as compared
with SGD, I wondered if I could use Adam to decrease train-
ing time and increase (or at least match) performance levels.
I began testing various ranges of the additional hyperparam-
eters needed for Adam (in Caffe these are ‘momentum2’
and ‘delta’), but after a couple days I was unable to find a
setting that even matched the performance of SGD. So for
the sake of time I moved on to try other potential forms of
improvement.

After reading [19], it became clear that large fully con-
nected layers at the end of a network do not necessarily con-
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tribute much to the overall performance and that depth in
the convolutional layers is actually preferable. To this end I
removed 1 and then 2 of the fully connected layers (out of
3) and added 1 and then 2 additional convolution layers (on
top of the existing 3). I attempted 5 different combinations
of these modified architectures, but like with the attempt at
using Adam, after multiple days there was no clear benefit,
and if anything added complexity was making the system
perform the same or, sometimes, worse.

At this point I chose to focus my efforts on the main
insight that motivated this project, which was that coupling
the architectures for gender and age classification could give
more expressive power to the classifiers, particularly for
age. As a sort of “proof of concept”, I attempted to train
classifiers on each gender separately to see what would hap-
pen. The results pleasantly surprised me and are summa-
rized in Figure 3. I saw that when training a classifier from
the ground up only on male images, the accuracy when pre-
dicting the age of men increased. Conversely, I saw the ac-
curacy of classifying women’s ages decreases over the aver-
age (which may or may not be taken as a social commentary
on how women are more effective at hiding their age).

Figure 3. Gender-specific age classification. Accuracies ob-
served for age classifiers trained on just men, just women, or both.

I attempted a similar approach of training separate clas-
sifiers for each age group, and those results are summarized
in Table 3. These results are less striking than those of Fig-
ure 3, but there is some reassurance in how intuition lines up
with the results. Namely it can be seen that the age range in
which it is most difficult to predict gender, with just a 27%
accuracy, is 0-2 years old. Of course though that makes per-
fect sense as gender-specific features are not usually present
at such a young age, or at least not as much as later in life.
Also the age range in which gender prediction is the best is
15-20, which also seems reasonable since that is the time
when there is the most development of gender-specific fea-
tures.

Given these results, it seemed most promising to use the
remaining time I had to develop and train a chained gender-
age network that would first classify gender (as before), and

Age 0-2 4-6 8-13 15-20 25-32 38-43 48-53 60+ All
Accuracy 0.27 0.76 0.76 0.92 0.78 0.87 0.79 0.76 0.79
Table 3. Age-specific gender classification. Accuracies observed
for gender classifiers trained only on images in a certain age range.

then based on the gender classification feed the image into
an age classifier trained solely on men or solely on women.
It should be emphasized again that all of these networks
were trained from randomly initialized weights as opposed
to using any pretrained models. The measurement of in-
terest was the final test accuracies from the 6-fold cross-
validation protocol. As in [12], gender accuracies are given
2 forms, exact and 1-off. Exact accuracies are the percent
of images that are classified into the correct age range (tra-
ditional definition of accuracy). The 1-off accuracies allow
for a deviation of at most one bucket from the actual age
range. This is used because practically there is very little to
no difference in facial features between people at the top of
one age range and those at the bottom of the next. Therefore
this 1-off measure provides flexibility in assigning images
to buckets that are “pretty close” to the actual age range.

The results of this chained net are summarized below in
Table 4, and I was pleased to find that, as proposed, this
chained structure allows for increased classification accu-
racy over the traditional approach of training age classifiers
on both genders at once. Table 5 is the confusion matrix for
this final chained net.

Exact 1-off
My Baseline 50.2 78.4
Chained Net 54.5 84.1

Table 4. Chained net accuracies. Age prediction accuracies
achieved by my chained gender-age classification model, as com-
pared to my baseline I trained while trying to reproduce the results
of [12] (see Table 2).

0-2 4-6 8-13 15-20 25-32 38-43 48-53 60+
0-2 0.713 0.187 0.081 0.004 0.006 0.003 0.002 0.002
4-6 0.234 0.473 0.205 0.060 0.015 0.007 0.003 0.002
8-13 0.041 0.181 0.506 0.101 0.121 0.045 0.001 0.002
15-20 0.015 0.019 0.145 0.308 0.410 0.086 0.009 0.006
25-32 0.011 0.015 0.078 0.123 0.625 0.112 0.022 0.013
38-43 0.009 0.011 0.055 0.035 0.116 0.306 0.404 0.059
48-53 0.006 0.008 0.042 0.049 0.160 0.321 0.190 0.223
60+ 0.010 0.008 0.039 0.033 0.126 0.224 0.195 0.363

Table 5. Chained net confusion matrix. Confusion matrix for
age classification using my final chained gender-age model.

6. Conclusion
Although many previous methods have tackled the prob-

lem of age and gender classification of images, in this paper
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I establish a benchmark for the task based on state-of-the-art
network architectures and show that chaining the prediction
of age with that of gender can improve overall accuracy. If
there had been more time, I would have dedicated more ef-
fort towards fine-tuning the parameters and the modified ar-
chitectures I experimented with. Specifically, I would have
liked to get the Adam learning algorithm in place with equal
or improved performance to SGD, and I would have liked
to replace the multiple fully connected layers at the end of
the architecture with only one and instead shifted those pa-
rameters over to additional convolutional layers.

By far the most difficult portion of this project was set-
ting up the training infrastructure to properly divide the data
into folds, train each classifier, cross-validate, and combine
the resulting classifiers into a test-ready classifier. I foresee
future directions building off of this work to include using
gender and age classification to aid face recognition, im-
prove experiences with photos on social media, and much
more. Finally I hope that additional training data will be-
come available with time for the task of age and gender
classification which will allow successful techniques from
other types of classification with huge datasets to be applied
to this area as well.
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