
CS231N Project: Facial Expression Recognition

Hsiao Chen Chang, Emilien Dupont, William Zhang

March 13, 2016

{hcchang7, edupont,
wzhang4}@stanford.edu

Stanford University
CS231N Final Report

Abstract

In this project, we investigated ways to leverage the rep-
resentational power of convolutional neural networks
to distinguish between seven emotions from pictures of
facial expressions. We implemented a conv-reLU-pool
architecture (with an increasing number of filters for
deeper layers) followed by two affine layers and softmax
loss. To eke out some extra accuracy, we also drew in-
spiration from knowledge distillation. Finally, we made
use of saliency maps to get a sense of what our neural
net managed to/failed to pick up on. Our final validation
accuracy on the test was 60.7%.

1 Introduction

Facial expression is an important indicator of a per-
son’s emotion. Computers and other electronic devices
in our daily lives will become more user-friendly if they
can adequately interpret a person’s facial expressions,
thereby improving human-machine interfaces. Facial
expression recognition can be implemented in all com-
puter interfaces, automated psychological research and
treatment, robots or even polygraphs. [3]

1.1 Dataset

The data we use is comprised of 48× 48 pixel grayscale
images of faces from the Kaggle competition Chal-
lenges in Representation Learning: Facial Expression
Recognition Challenge [9]. The training set consists of
28,709 examples, while both the test and validation sets
are composed of 3,589 examples. This data set contains

photos and labels of seven categories of facial expres-
sions/emotions: Anger, Disgust, Fear, Happy, Sad, Sur-
prise, Neutral. These images have already been some-
what ’preprocessed’: they are mostly centered and ad-
justed so that the face occupies about the same amount
of space in each image.
The class distribution of the dataset can be found in Fig-
ure 1:

Figure 1: Distribution of the emotions

As can clearly be seen, Disgust is heavily under-
represented at roughly 1.5%, and Happy the most pop-
ulated class. This will come into play later (see section
5).

A few example images from the dataset are shown in
Figure 2.

1.2 Problem Statement
The goal of this project is to predict, from the grayscale
picture of a person’s face, which emotion the facial ex-
pression conveys. Our evaluation metric will be the ac-
curacy for each emotion (fraction of correctly classi-
fied images), supplemented by a confusion matrix which
highlights which emotions are better recognized than
others. In short,

• Input : 48 by 48 grayscale image of a face

1



Figure 2: Example images from the dataset.

• Output : Emotion conveyed by facial expression

2 Background/Related Work
The problem of classifying emotions from facial expres-
sions in images is widely studied. One of the first pa-
pers to apply neural nets to this end is the EMPATH
paper from 2002 [4]. It proceeds by performing Gabor
filtering on the raw images followed by various trans-
formations and PCA before applying a 3 layer neural
net. More recently, papers such as ([10], [12], [16]) have
used deep neural and convolutional neural networks to
classify emotions. Most of these papers focus on classi-
fying emotions in video footage or based on audiovisual
data (mixing speech recognition and video techniques).
Many papers seek to recognize and match faces (e.g.
[12]), but most papers do not use convolutional neural
networks to extract emotions from still images. An ex-
ception to this is a paper by Kahou et al. which ([10])
actually trains a deep convolutional neural network on a
set of static images, but then applies this to video data.

In addition to the Kaggle Competition, there is also
another competition for emotion recognition in static
images and videos, the Emotion Recognition In The Wild
Challenge [5]. In particular, the winners of the 2013
competition use convolutional neural networks for clas-
sification.

Finally, the winner of the Kaggle competition used a
deep neural net (based on CIFAR-10 weights) to extract

features and then SVM for classification [17].

3 Technical Approach

3.1 Methodology
We chose Torch 7 [1] as our framework to train neu-
ral networks on. Torch is a scientific computing frame-
work with wide support for machine learning algorithms
including popular neural network and optimization li-
braries which are simple to use. It is easy to use, effi-
cient and beginner friendly.
As the Kaggle data came in the form of a .csv file, with
each entry as a list of grayscale pixel values, we chose
to mean-center and normalize it into a 32-bit array in
Python. This array was then saved to an HDF5 file, and
subsequently read into Torch.

3.2 Baseline
As a baseline/starting point, we trained a three-layer
convolutional network on the data set, using the same
architecture as that proposed in Assignment 2 [11],
namely: 5 × 5 Conv - ReLU - 2 × 2 max-pool - affine -
ReLU - affine - softmax.

3.3 Data augmentation
To compensate for the relatively small size of the
dataset, we made use of the popular data augmenta-
tion technique that consists in flipping images horizon-
tally. As emotions should intuitively not change based
on whether or not facial expressions are mirrored, it
seemed a sensible choice.

3.4 Architecture
The final architecture retained can be described as fol-
lows:

• 3× 3 Conv - ReLU - 2×2 Max-Pool with 32 filters

• 3× 3 Conv - ReLU - 2×2 Max-Pool with 64 filters

• 3× 3 Conv - ReLU - 2×2 Max-Pool with 96 filters

• 3 × 3 Conv - ReLU - 2 × 2 Max-Pool with 128
filters

• FC hidden layer with 200 hidden units

• FC layer to 7 class scores

2



Figure 3: Architecture of the neural net.

A pictorial description of this architecture can be found
in Figure 3. The loss function we used was the Softmax
loss. The update rule we used was the Adam update.[6]
Adam is a method for efficient stochastic optimization
that only requires first-order gradients with little mem-
ory requirement. We have explored different update
rules in our model, including SGD (stochastic gradi-
ent descent), Adagrad, RMSProp. It turns out that Adam
performs the best among these update rules, slightly bet-
ter than RMSProp.

4 Experiments/Optimizing the net

4.1 Parameters
To choose the parameters (regularization strength, learn-
ing rate and decay), we randomly sampled in log space
and retained those that yielded the best validation accu-
racy. The parameters we ended up using are the follow-
ing:

• Batch size: 50

• Learning rate: 0.00127

• L2 regularization strength: 0.00172

• Learning rate decay: 0.95

• Hidden layer dimensions: 200

• Number of filters: [32,64,96,128]

• Size of filters: 3× 3

• Number of epochs: 40

4.2 Regularization
One of the common problems we encountered during
neural network training is over-fitting. The neural net-
work was driving the error on the training set to a very

small value, but this was not the case for the validation
error, leading to an increasing gap between the two.
In order to improve neural network generalization and
avoid over-fitting, we have experimented with different
common regularization techniques listed in Assignment
2[11]: L2 regularization, dropout, and batch normaliza-
tion. One of the models we trained in this project in-
cludes the batch normalization immediately after every
convolutional layer. Batch-normalization [14] performs
normalization for each training mini batch (which is 50
in our model) so that we can use higher learning rates
and make our model significantly more robust to bad ini-
tialization. It can alleviate the problem of the change of
the distribution of each layer’s input. The accuracy im-
proved by a few percentage points as a result. In addition
to batch-normalization, we also made use of dropout
[13], but unfortunately did not observe significant im-
provements.

4.3 Knowledge distillation
In order to eke some extra performance out of neural
network, we drew inspiration from [8]: the idea behind
’distilling’ knowledge into neural networks is that the
output of a network (the stage right before an actual pre-
diction on an input is made) is akin to a probability dis-
tribution, representing what the network believes to be
probabilities of the given input as belonging to each of
the seven classes. Intuitively, if a network is very ac-
curate, then these probability vectors will contain much
more information, especially for the backward passes,
than the typical one-hot vectors. In the case of deep neu-
ral networks that are computationally expensive to run
on certain architectures (e.g. a mobile phone), the afore-
mentioned probability vectors are used in conjunction
with the usual one-hot vectors to feed more useful in-
formation to a smaller network, yielding better results
than using one-hot vectors alone. Naturally, this requires
a separate loss function, which is a weighted average of
the softmax loss for one-hot vectors and the Kullback-
Leibler Divergence:

loss(xi) = α
(
−fyi + log

∑
j e

fj
)
+ (1− α)

∑
j ỹj (log ỹj − fj) (1)

where α is a number between 0 and 1, fj the score for
class j, and ỹi the probability vector output by a previ-
ous network.
Note that distillation is usually applied when we have
a very large and accurate network and wish to train a
smaller network which achieves similar results. In our
case, we experimented with using the probability out-
puts of our network and then we fed the probability dis-

3



tribution back in to that same network to improve the
accuracy. The authors of [8] recommend an α in the
vicinity of 0.1; however, in our case, since we are not
distilling knowledge from a larger network to a smaller
one, we chose an α in the vicinity of 0.8.

5 Results

The final validation accuracy we obtained is 60.7%.
An example plot of our accuracy evolution can be

found in Figure 4. As can be seen, the training accuracy
increases while the test accuracy remains almost con-
stant after about 15 epochs. This means we are slightly
overfitting our data.

Figure 4: Training and validation accuracy over 40
epochs for a typical network we trained.

Figure 5: Loss History

The confusion matrix on the validation set is shown
in 6.

As can clearly be seen, Disgust is the class where our
network fares the worst, and Happy where it is most suc-

Figure 6: Confusion matrix. The rows correspond to the
true values and the columns correspond to our predic-
tions.

cessful - a fact very likely due, at least in part, to the
uneven class distribution mentioned in section 1.1.

5.1 Saliency Maps and important facial
features

Ekman et al [2] made a study in 1975 of which parts
of the face are most important for different emotions.
It turns out this depends on different emotions: for in-
stance, anger is often detected on the upper part of the
face whereas happiness is often detected in the lower
part of the face.

Now, it is interesting to observe which parts of the
face the network considers as ”important”. To do this
we use saliency maps as defined in a paper by Simonyan
et al [15]. Saliency maps allow us to see which parts of
the image the net ”reacts” to and which it doesn’t. For
most images, the saliency map do not show much inter-
esting stuff except that the net reacts to the face and not
the background. For some images however interesting
behaviour is observed as described in Figure 7.

5.2 Human performance

In an effort to compare our results to human perfor-
mance, each of us attempted to guess emotions for a 100
randomly chosen faces. On these examples we achieved
an accuracy of 63.4% on average. This seems to be quite
low, but the images in the dataset are very small and
some emotions are very difficult to distinguish. Given
larger and clearer images, human accuracy is much
higher. The results of a psychological study made by
Ekman et al [7] are shown in Table 1.

4



Figure 7: Three images and their corresponding saliency
map. In the first image we see a very strong reaction to
the smile of the woman, and the net successfully clas-
sifies the image as ”Happy”. In the second image, the
neural net reacts mostly to the eye of the man and classi-
fies the image as ”Fear”. In the last image, the net reacts
to the frown and eyebrow of the man and classifies the
image as ”Anger”.

However, it does not make much sense to compare
our results to this, since this is emotion recognition for
human faces and not grayscale 48 by 48 images with
occasionally dubious labeling. Also, in the psychologi-
cal experiment, the testers could detect a series of facial
changes in real time instead of one input image as is the
case for our problem.

Finally, it should also be noted that other partici-
pants in the Kaggle challenge report human accuracies
(around 60%) close to our own.

Emotion Accuracy (%)
Happiness 98.7
Surprise 92.4
Disgust 92.3
Anger 88.9
Sadness 89.2
Fear 87.7
Neutral 91.6

Table 1: Results of psychological study

Figure 8: Comparison of human performance and our
neural net.

6 Conclusion

In this project, we built a convolutional neural network
to recognize emotion from grayscale pictures of faces.
We used a Conv-ReLU-Pool architecture and softmax
loss. For regularization, we experimented with batch
normalization, L2 regularization and dropout, but only
retained the first two in our final net. To optimize the
net, we used ADAM with learning rate decay.

The final validation accuracy we obtained using this
architecture was 60.7%. Some of the difficulties with
improving this is that the images are very small and in
some cases it is very hard to distinguish which emo-
tion is on each image, even for humans. To understand
how the neural net classified different images we used
saliency maps, to detect important regions in the images
according to the neural net. Even though most results

5



where quite noisy, some images showed convincing re-
sults (for example a smile or a frown leading to happi-
ness and anger respectively).

Even though our validation accuracy is fairly high, we
believe that adding more layers and more filters would
further improve the network. In future work it would
be interesting to try this approach as well as building a
classifier using pre trained nets (on e.g. CIFAR-10).

Code for this project can be found at the following
github repo.

References
[1] Torch: Scientific computing for luajit. 2

[2] J. D. Boucher and P. Ekman. Facial areas and emo-
tional information. 1975. 4

[3] Roberto Cipolla and Alex Pentland. Computer vi-
sion for human-machine interaction. Cambridge
university press, 1998. 1

[4] Matthew N Dailey, Garrison W Cottrell, Curtis
Padgett, and Ralph Adolphs. Empath: A neural
network that categorizes facial expressions. Jour-
nal of cognitive neuroscience, 14(8):1158–1173,
2002. 2

[5] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Karan
Sikka, and Tom Gedeon. Emotion recognition in
the wild challenge 2014: Baseline, data and proto-
col. In Proceedings of the 16th International Con-
ference on Multimodal Interaction, pages 461–
466. ACM, 2014. 2

[6] Jimmy Lei Ba Diederik P. Kingma. Adam: A
method for stochastic optimization. 2015. 3

[7] Paul Ekman, Wallace V Friesen, and Consult-
ing Psychologists Press. Pictures of facial affect.
consulting psychologists press, 1975. 4

[8] Jeff Dean Geoffrey Hinton, Oriol Vinyals. Distill-
ing the knowledge in a neural network. In NIPS
2014 Deep Learning Workshop. 3, 4

[9] Kaggle. Kaggle competition: Challenges in rep-
resentation learning: Facial expression recognition
challenge, 2013. 1

[10] Samira Ebrahimi Kahou, Christopher Pal, Xavier
Bouthillier, Pierre Froumenty, Çaglar Gülçehre,
Roland Memisevic, Pascal Vincent, Aaron

Courville, Yoshua Bengio, Raul Chandias Ferrari,
et al. Combining modality specific deep neural
networks for emotion recognition in video. In
Proceedings of the 15th ACM on International
conference on multimodal interaction, pages
543–550. ACM, 2013. 2

[11] Andrej Karpathy and Justin Johnson. Assign-
ment 2: Fully-connected nets, batch normalization,
dropout, convolutional nets. 2, 3

[12] Thai Hoang Le. Applying artificial neural net-
works for face recognition. Advances in Artificial
Neural Systems, 2011:15, 2011. 2

[13] Alex Krizhevsky Ilya Sutskever Ruslan Salakhut-
dinov Nitish Srivastava, Geoffrey Hinton.
Dropout: A simple way to prevent neural networks
from overfitting. 2014. 3

[14] Christian Szegedy Sergey Ioffe. Batch normaliza-
tion: Accelerating deep network training by reduc-
ing internal covariate shift. 3

[15] Karen Simonyan, Andrea Vedaldi, and Andrew
Zisserman. Deep inside convolutional net-
works: Visualising image classification models
and saliency maps. CoRR, abs/1312.6034, 2013.
4

[16] Yi Sun, Xiaogang Wang, and Xiaoou Tang.
Deep learning face representation from predicting
10,000 classes. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 1891–1898, 2014. 2

[17] Yichuan Tang. Deep learning using support vector
machines. CoRR, abs/1306.0239, 2013. 2

6

https://github.com/williamzhangecp/cs231n_project

