

225

Abstract

A real-time sign language translator is an important

milestone in facilitating communication between the deaf
community and the general public. We hereby present the
development and implementation of an American Sign
Language (ASL) fingerspelling translator based on a
convolutional neural network. We utilize a pre-trained
GoogLeNet architecture trained on the ILSVRC2012
dataset, as well as the Surrey University and Massey
University ASL datasets in order to apply transfer
learning to this task. We produced a robust model that
consistently classifies letters a-e correctly with first-time
users and another that correctly classifies letters a-k in a
majority of cases. Given the limitations of the datasets and
the encouraging results achieved, we are confident that
with further research and more data, we can produce a
fully generalizable translator for all ASL letters.

1. Introduction
American Sign Language (ASL) substantially facilitates

communication in the deaf community. However, there
are only ~250,000-500,000 speakers which significantly
limits the number of people that they can easily
communicate with [1]. The alternative of written
communication is cumbersome, impersonal and even
impractical when an emergency occurs. In order to
diminish this obstacle and to enable dynamic
communication, we present an ASL recognition system
that uses Convolutional Neural Networks (CNN) in real
time to translate a video of a user’s ASL signs into text.
Our problem consists of three tasks to be done in real
time:

1. Obtaining video of the user signing (input)
2. Classifying each frame in the video to a letter
3. Reconstructing and displaying the most likely word

from classification scores (output)

From a computer vision perspective, this problem
represents a significant challenge due to a number of
considerations, including:

• Environmental concerns (e.g. lighting sensitivity,

background, and camera position)
• Occlusion (e.g. some or all fingers, or an entire hand

can be out of the field of view)
• Sign boundary detection (when a sign ends and the

next begins)
• Co-articulation (when a sign is affected by the

preceding or succeeding sign)

While Neural Networks have been applied to ASL letter
recognition (Appendix A) in the past with accuracies that
are consistently over 90% [2-11], many of them require a
3-D capture element with motion-tracking gloves or a
Microsoft Kinect, and only one of them provides real-time
classifications. The constraints imposed by the extra
requirements reduce the scalability and feasibility of these
solutions.

Our system features a pipeline that takes video of a user
signing a word as input through a web application. We
then extract individual frames of the video and generate
letter probabilities for each using a CNN (letters a through
y, excluding j and z since they require movement). With
the use of a variety of heuristics, we group the frames
based on the character index that each frame is suspected
to correspond to. Finally, we use a language model in
order to output a likely word to the user.

2. Related Work

ASL recognition is not a new computer vision problem.
Over the past two decades, researchers have used
classifiers from a variety of categories that we can group
roughly into linear classifiers, neural networks and
Bayesian networks [2-11].

While linear classifiers are easy to work with because
they are relatively simple models, they require
sophisticated feature extraction and preprocessing
methods to be successful [2, 3, 4]. Singha and Das
obtained accuracy of 96% on 10 classes for images of
gestures of one hand using Karhunen-Loeve Transforms

Real-time American Sign Language Recognition with Convolutional Neural

Networks

Brandon Garcia
Stanford University

Stanford, CA
bgarcia7@stanford.edu

Sigberto Alarcon Viesca
Stanford University

Stanford, CA
salarcon@stanford.edu

226

[2]. These translate and rotate the axes to establish a new
coordinate system based on the variance of the data. This
transformation is applied after using a skin filter, hand
cropping and edge detection on the images. They use a
linear classifier to distinguish between hand gestures
including thumbs up, index finger pointing left and right,
and numbers (no ASL). Sharma et al. use piece-wise
classifiers (Support Vector Machines and k-Nearest
Neighbors) to characterize each color channel after
background subtraction and noise removal [4]. Their
innovation comes from using a contour trace, which is an
efficient representation of hand contours. They attain an
accuracy of 62.3% using an SVM on the segmented color
channel model.

Bayesian networks like Hidden Markov Models have
also achieved high accuracies [5, 6, 7]. These are
particularly good at capturing temporal patterns, but they
require clearly defined models that are defined prior to
learning. Starner and Pentland used a Hidden Markov
Model (HMM) and a 3-D glove that tracks hand
movement [5]. Since the glove is able to obtain 3-D
information from the hand regardless of spatial
orientation, they were able to achieve an impressive
accuracy of 99.2% on the test set. Their HMM uses time-
series data to track hand movements and classify based on
where the hand has been in recent frames.

Suk et al. propose a method for recognizing hand
gestures in a continuous video stream using a dynamic
Bayesian network or DBN model [6]. They attempt to
classify moving hand gestures, such as making a circle
around the body or waving. They achieve an accuracy of
over 99%, but it is worth noting that all gestures are
markedly different from each other and that they are not
American Sign Language. However, the motion-tracking
feature would be relevant for classifying the dynamic
letters of ASL: j and z.

Some neural networks have been used to tackle ASL
translation [8, 9, 10, 11]. Arguably, the most significant
advantage of neural networks is that they learn the most
important classification features. However, they require
considerably more time and data to train. To date, most
have been relatively shallow. Mekala et al. classified video
of ASL letters into text using advanced feature extraction
and a 3-layer Neural Network [8]. They extracted features
in two categories: hand position and movement. Prior to
ASL classification, they identify the presence and location
of 6 “points of interest” in the hand: each of the fingertips
and the center of the palm. Mekala et al. also take Fourier
Transforms of the images and identify what section of the
frame the hand is located in. While they claim to be able
to correctly classify 100% of images with this framework,
there is no mention of whether this result was achieved in
the training, validation or test set.

Admasu and Raimond classified Ethiopian Sign
Language correctly in 98.5% of cases using a feed-

forward Neural Network [9]. They use a significant
amount of image preprocessing, including image size
normalization, image background subtraction, contrast
adjustment, and image segmentation. Admasu and
Raimond extracted features with a Gabor Filter and
Principal Component Analysis.

The most relevant work to date is L. Pigou et al’s
application of CNN’s to classify 20 Italian gestures from
the ChaLearn 2014 Looking at People gesture spotting
competition [11]. They use a Microsoft Kinect on full-
body images of people performing the gestures and
achieve a cross-validation accuracy of 91.7%. As in the
case with the aforementioned 3-D glove, the Kinect allows
capture of depth features, which aids significantly in
classifying ASL signs.

3. Approach and Methods

3.1. Classifier Development

3.1.1 Transfer Learning

Our ASL letter classification is done using a
convolutional neural network (CNN or ConvNet). CNNs
are machine learning algorithms that have seen incredible
success in handling a variety of tasks related to processing
videos and images. Since 2012, the field has experienced
an explosion of growth and applications in image
classification, object localization, and object detection.

A primary advantage of utilizing such techniques stems
from CNNs abilities to learn features as well as the
weights corresponding to each feature. Like other machine
learning algorithms, CNNs seek to optimize some
objective function, specifically the loss function. We
utilized a softmax-based loss function:

 (1)

 (2)

Equation (2) is the softmax function. It takes a feature
vector z for a given training example, and squashes its
values to a vector of [0,1]-valued real numbers summing
to 1. Equation (1) takes the mean loss for each training
example, xi, to produce the full softmax loss.

Using a softmax-based classification head allows us to
output values akin to probabilities for each ASL letter.
This differs from another popular choice: the SVM loss.

227

Using an SVM classification head would result in scores
for each ASL letter that would not directly map to
probabilities. These probabilities afforded to us by the
softmax loss allow us to more intuitively interpret our
results and prove useful when running our classifications
through a language model.

3.1.2 Transfer Learning

Transfer Learning is a machine learning technique
where models are trained on (usually) larger data sets and
refactored to fit more specific or niche data. This is done
by recycling a portion of the weights from the pre-trained
model and reinitializing or otherwise altering weights at
shallower layers. The most basic example of this would be
a fully trained network whose final classification layer
weights have been reinitialized to be able to classify some
new set of data. The primary benefits of such a technique
are its less demanding time and data requirements.
However, the challenge in transfer learning stems from the
differences between the original data used to train and the
new data being classified. Larger differences in these data
sets often require re-initializing or increasing learning
rates for deeper layers in the net.

3.1.3 Caffe and GoogLeNet

We employed Caffe, a deep learning framework [12], in
order to develop, test, and run our CNNs. Specifically, we
used Berkeley Vision and Learning Center’s GoogLeNet
pre-trained on the 2012 ILSVRC dataset. This net output
three different losses at various depths of the net and
combines these losses prior to computing a gradient at
training time.

3.2. General Technique

Our overarching approach was to fine-tune a pre-trained
GoogLeNet. Our data is composed exclusively of hands in
24 different orientations, while the ILSVRC data is
composed of 1000 uniquely different objects or classes.
Even though the ILSVRC data has some classes that are
quite similar to each other (e.g. various breeds of dogs),
our data was comprised of the same object merely
positioned and oriented in different ways. Considering the
stark differences between our data and the data that
GoogLeNet was pre-trained on, we decided to test the
effectiveness of altering a variety of the pre-trained
weights at different depths. We amplified learning rates by
a factor of ten and completely reset weights in the first
one, two or three layers of the net using Xavier
initialization.

3.3. Developing our pipeline

In order to obtain images of the user signing in real-
time, we created a web application that is able to access a

native camera on a laptop through the browser solely
using HTML and JavaScript. This was done using an API
created by the World Wide Web Consortium (W3C).
Image capture rate was a massive problem we struggled
with. We looked to balance network request speeds with
computation speeds of our neural network (discussed
below). The latter proved to be the primary bottleneck,
forcing us to settle on an image capture rate of one frame
per second. Increasing our capture rate created larger
delays in giving the user feedback than we were satisfied
with.

Our web application sends images to our server one by
one. Each time, the server classifies the image and
presents probabilities for each letter. It keeps a running
cache of classified images. When it feels confident about
the sign being made by the user, it records the top-5 most
likely letters based on the cache. It then clears the cache,
and lets the user know to move on to the next letter.

Once the user has indicated that they’re finished
signing, the top-5 letters for each position in the spelled
word are passed to a custom unigram language model
based on the Brown Corpus. The model takes into account
substitution costs for similar-looking letters that are often
confused by the classifier as well as the probabilities for
the top-5 letters at each position in the word. Using these,
single word unigram probabilities and a handful of other
heuristics, it returns the optimal word to the user.

4. Datasets and Features

Fig. 1. Dataset examples. Left: Surrey University. Right:
Massey University. Top left: y. Bottom left: k. Top right: i.
Bottom right: e.

4.1. Dataset Description

The ASL FingerSpelling Dataset from the University of
Surrey’s Center for Vision, Speech and Signal Processing
is divided into two types: color images (A) and depth
images (B). To make our Translator accessible through a
simple web-app and laptop with a camera, we chose to
only use the color images. They are close-ups of hands
that span the majority of the image surface (Fig. 1).

228

Dataset A comprises the 24 static signs of ASL captured
from 5 users in different sessions with similar lighting and
backgrounds. The images are in color. Their height-to-
width ratios vary significantly but average approximately
150x150 pixels. The dataset contains over 65,000 images.

The Massey University Gesture Dataset 2012 contains
2,524 close-up, color images that are cropped such that the
hands touch all four edges of the frame. The hands have
all been tightly cropped with little to no negative space
and placed over a uniform black background.
Coincidentally, this dataset was also captured from five
users. The frames average approximately 500x500 pixels.

Since there was little to no variation between the images
for the same class of each signer, we separated the datasets
into training and validation by volunteer. Four of the five
volunteers from each dataset were used to train, and the
remaining volunteer from each was used to validate. We
opted not to separate a test set since that would require us
to remove one of four hands from the training set and thus
significantly affect generalizability. Instead, we tested the
classifier on the web application by signing ourselves and
observing the resulting classification probabilities
outputted by the models.

4.2. Pre-processing and data augmentation

Both datasets contain images with unequal heights and
weights. Hence, we resize them to 256x256 and take
random crops of 224x224 to match the expected input of
the GoogLeNet. We also zero-center the data by
subtracting the mean image from ILSRVC 2012. Since the
possible values in the image tensors only span 0-255, we
do not normalize them. Furthermore, we make horizontal
flips of the images since signs can be performed with
either the left of the right hand, and our datasets have
examples of both cases.

Since the difference between any two classes in our
datasets is subtle compared to ILSRVC classes, we
attempted padding the images with black pixels such that
they preserved their aspect ratio upon resizing. This
padding also allows us to remove fewer relevant pixels
upon taking random crops.

5. Experiments, Results and Analysis

5.1. Evaluation Metric
We evaluate two metrics in order to compare our results

with those of other papers. The most popular criterion in
the literature is accuracy in the validation set, i.e. the
percentage of correctly classified examples. One other
popular metric is top-5 accuracy, which is the percentage
of classifications where the correct label appears in the 5
classes with the highest scores.

Additionally, we use a confusion matrix, which is a
specific table layout that allows visualization of the
performance of the classification model by class. This

allows us to evaluate which letters are the most
misclassified and draw insights for future improvement.

5.2. Experiments

For each of the following experiments below, we
trained our model on letters a-y (excluding j). After some
initial testing, we found that using an initial base learning
rate of 1e-6 worked fairly well in fitting the training data -
it provided a steady increase in accuracy and seemed to
successfully converge. Once the improvements in the loss
stagnated, we manually stopped the process and decreased
the learning rate in order to try and increase our
optimization of our loss function. We cut our learning rate
by factors ranging from 2 to 100.

Furthermore, we used the training routine that
performed best with real users on our web application
(‘2_init’). We also built models to only classify letters a-k
(excluding j) or a-e to evaluate if we attained better results
with fewer classes.

1 layer reinitialization and learning rate multiple
increase (‘1_init’):
We initialized this model with the pre-trained weights
from the GoogLeNet trained on ILSVRC 2012. We then
reinitialized all the classification layers with Xavier
initialization and increased the learning rate multiple of
only this layer in order to help it learn faster than the rest
of the net’s pre-trained layers.

2 layer reinitializaiton and learning rate multiple
increase (‘2_init’)
We initialized this model with the pre-trained weights
from the GoogLeNet trained on ILSVRC 2012. We then
reinitialized all the classification layers with Xavier
initialization and appropriately adjusted their dimensions
to match our number of classes. We increased the learning
rate multiples for the top three layers beneath each
classification head.

1 layer reinitialization, learning rate multiple increase,
and increased batch size (‘1_init’)
We initialized this model with the pre-trained weights
from the GoogLeNet trained on ILSVRC 2012. We then
reinitialized all the classification layers with Xavier
initialization and increased the learning rate multiple of
only this layer in order to help it learn faster than the rest
of the net’s pre-trained layers. Finally, we drastically
increased the batch size from 4 to 20.

1 layer reinitialization, uniform learning rate (‘full_lr’)
We initialized this model with the pre-trained weights
from the GoogLeNet trained on ILSVRC 2012. We then
reset all the classification layers with Xavier initialization
but kept learning rate constant through the net.

229

5.3. Results

The results for all models are summarized below.

Table 1. Optimal accuracy ranges for all models
 trained on each letter subset.

Fig. 2: Epochs vs. validation accuracy for all models trained on
letters a-y (excluding j)

Fig. 3: Epochs vs. training loss for all models trained on letters a-
y (excluding j)

Fig. 4: Epochs vs. validation accuracy for the 2_init models
trained on each letter subset (excluding j)

Fig. 5: Epochs vs. training loss for the 2_init models trained on
each letter subset (excluding j)

Fig. 6: Confusion matrix for the 2_init model trained on letters a-
y (excluding j)

Model Top-1 Val
Accuracy

Top-5 Val
Accuracy

a - y [1_init] 0.6847 0.9163

a - y [2_init] 0.6585 0.9043

a - y [batch] 0.6965 0.9076

a - y [full_lr] 0.7200 0.9098

a - k [2_init] 0.7430 0.897

a - e [2_init] 0.9782 1.000

230

Fig. 7: Confusion matrix for the 2_init model trained on letters a-
k (excluding j)

Fig. 8: Confusion matrix for the 2_init model trained on letters a-
e

5.4. Discussion

5.4.1 Loss and Accuracy

Our losses (Fig. 3) were very noisy in the ‘1_init’ and
‘2_init’ models. Our space and time constraints initially
required us to choose a less-than-optimal batch size value
of 4, resulting in the noisy loss. However, after seeing
these results, we trained a net using a Lighting Memory-
Mapped Database (LMDB) and were able to increase the
batch size to 20. This allowed us to reduce our loss more
smoothly and monotonically, in addition to more quickly
converging on a validation accuracy. Similarly, the
‘full_train’ model had uniform learning rates throughout
each layer in the net, allowing us to learn more quickly.

This is likely due to the fact that we are able to more
easily alter the pre-trained weights in the GoogLeNet and
correct for the significant differences between the datasets.
While this leads to a tighter fitting of the training data, it
did not seem to result in lower validation accuracy than
those attained with other models. After analyzing many of
the images from our dataset, we concluded that they were
most likely produced by taking video frames of
individuals making ASL signs in the same room and in a
single sitting. The lack of variation in our data set explains
the similar validation accuracy in our ‘full_train’ model
relative to others.

Interestingly, changing our re-initialization scheme and
learning rates had little effect on the final top-1 and top-5
accuracies: the largest difference between two models was
less than 7% on top-1 and just over 1% on top-5 accuracy.
We did notice, however, that the models utilized that only
re-initialized weights at the classification layer strictly
outperformed the 2-layer re-initialization model.
Notwithstanding the fact that the distinction between
classes in our dataset and the ILSVRC 2012 dataset are
starkly different, this is not unexpected because of the high
quality of the features extracted by GoogLeNet. It was
pre-trained on significantly more images than we had
available in our dataset.

 There was little difference between the ‘1_init’ and
‘2_init’ models. Given the fact that GoogLeNet is 22
layers deep, intuition would lead us to believe that
reinitializing 2 layers (versus reinitializing 1 and
increasing the learning rate multiple on another) would not
prove to be incredibly advantageous in fine-tuning our
model to our validation set. This was confirmed in our
experiments.

We qualitatively tested the four models on real users
with our web application (see below). We decided to take
the ‘2_init’ model and create classifiers for letters a – e
and a – k (excluding j) since we expected it would be less
difficult to distinguish between fewer classes.

Not surprisingly, there was a direct, negative correlation
between the validation accuracies attained using the
‘2_init’ model, and the number of letters we sought to
classify (Fig. 4). We attained a validation accuracy of
nearly 98% with five letters and 74% with ten.

5.4.2 Confusion matrices (validation)

The confusion matrices reveal that our accuracy suffers
primarily due to the misclassification of specific letters
(e.g. k and d in Fig. 7). Often the classifier gets confused
between two or three similar letters or heavily prefers one
of the two in such a pair (e.g. g/h in Fig. 7 and m/n/s/t in
Fig. 6).

The confusion matrix for the ten-letter model reveals
that with the exception of classifying k, it performed
reasonably well. We believe that there are two main

231

reasons for this result. First, in the dataset, k is signed from
various different perspectives - from the front to the back
of the hand facing the camera - and rotations - with the
fingers pointing up and to the sides. The only consistent
aspect is the center mass of the hand in all pictures, which
is precisely what a resembles. Second, in the range a-k, k
it has features that are very similar to letters d, g, h, and i –
it can be constructed by a combination of segments of
these letters. Hence, if the classifiers over-relied on any of
these features individually, it would be easy to misclassify
k as any of them and would make it harder to learn the
latter.

5.4.3 Real-time user testing

As aforementioned, we initially tested our four a – y
classification models on real users through our web
application. This consisted of testing on images in a wide
range of environments and hands. A key observation was
that there is no significant correlation between the final
validation accuracies of the models and their real-time
performance on our web application. For example,
‘full_lr’ classified an input as a in over half the cases with
> 0.99 probability, almost independently of the letter we
showed it.

It was very apparent that the ‘2_init’ model outshined
the rest even though it produced the lowest validation
accuracy. However, it still failed to consistently predict the
correct letter in the top-5. For this reason, we created the
models alluded to above with five (a – e) and ten (a – k,
excluding j) classes.

Testing the classifiers with fewer classes on the live
web application also yielded significantly different results
from testing on the validation set. On ten-letter
classification, some letters that were classified correctly in
> 70% of cases (e.g. b, c, Fig. 7) were almost always
absent in the top-5 predictions. Moreover, some letters
were noticeably overrepresented in the predictions, like a
and e (Fig. 7). We attribute this to the fact that neither of
these has any fingers protruding from the center of the
hand. They will thus share the central mass of the hand in
the pictures with every other letter without having a
contour that would exclude them.

6. Conclusions and Future Work

6.1. Conclusions

We implemented and trained an American Sign
Language translator on a web application based on a CNN
classifier. We are able to produce a robust model for
letters a-e, and a modest one for letters a-k (excluding j).
Because of the lack of variation in our datasets, the
validation accuracies we observed during training were
not directly reproducible upon testing on the web
application. We hypothesize that with additional data

taken in different environmental conditions, the models
would be able to generalize with considerably higher
efficacy and would produce a robust model for all letters.

6.2. Future Work

Additional Models: We focused our efforts on
optimizing GoogLeNet, but it would be worth exploring
different nets that have also been proven effective at
image classification (e.g. a VGG or a ResNet
architecture).

Image preprocessing: We believe that the classification
task could be made much simpler if there is very heavy
preprocessing done on the images. This would include
contrast adjustment, background subtraction and
potentially cropping. A more robust approach would be to
use another CNN to localize and crop the hand.

Language Model Enhancement: Building a bigram and
trigram language model would allow us to handle
sentences instead of individual words. Along with this
comes a need for better letter segmentation and a more
seamless process for retrieving images from the user at a
higher rate.

WEBAPP DEMO: https://youtu.be/79Fmu0TZ9xc

7. Appendix

American sign language fingerspelling alphabet [13]

8. References

[1] Mitchell, Ross; Young, Travas; Bachleda, Bellamie;

Karchmer, Michael (2006). "How Many People Use ASL in
the United States?: Why Estimates Need Updating" (PDF).
Sign Language Studies (Gallaudet University Press.) 6 (3).
ISSN 0302-1475. Retrieved November 27, 2012.

[2] Singha, J. and Das, K. “Hand Gesture Recognition Based on
Karhunen-Loeve Transform”, Mobile and Embedded

232

Technology International Conference (MECON), January
17-18, 2013, India. 365-371.

[3] D. Aryanie, Y. Heryadi. American Sign Language-Based
Finger-spelling Recognition using k-Nearest Neighbors
Classifier. 3rd International Conference on Information and
Communication Technology (2015) 533-536.

[4] R. Sharma et al. Recognition of Single Handed Sign
Language Gestures using Contour Tracing descriptor.
Proceedings of the World Congress on Engineering 2013
Vol. II, WCE 2013, July 3 - 5, 2013, London, U.K.

[5] T.Starner and A. Pentland. Real-Time American Sign
Language Recognition from Video Using Hidden
Markov Models. Computational Imaging and Vision, 9(1);
227-243, 1997.

[6] M. Jeballi et al. Extension of Hidden Markov Model for
Recognizing Large Vocabulary of Sign Language.
International Journal of Artificial Intelligence &
Applications 4(2); 35-42, 2013

[7] H. Suk et al. Hand gesture recognition based on dynamic
Bayesian network framework. Patter Recognition 43 (9);
3059-3072, 2010.

[8] P. Mekala et al. Real-time Sign Language Recognition
based on Neural Network Architecture. System Theory
(SSST), 2011 IEEE 43rd Southeastern Symposium 14-16
March 2011.

[9] Y.F. Admasu, and K. Raimond, Ethiopian Sign Language
Recognition Using Artificial Neural Network. 10th
International Conference on Intelligent Systems Design and
Applications, 2010. 995-1000.

[10] J. Atwood, M. Eicholtz, and J. Farrell. American Sign
Language Recognition System. Artificial Intelligence and
Machine Learning for Engineering Design. Dept. of
Mechanical Engineering, Carnegie Mellon University,
2012.

[11] L. Pigou et al. Sign Language Recognition Using
Convolutional Neural Networks. European Conference on
Computer Vision 6-12 September 2014

[12] Y. Jia. Caffe: An open source convolutional architecture for
fast feature embedding. http://caffe.berkeleyvision.org/,
2014.

[13] Lifeprint.com. American Sign Language (ASL) Manual
Alphabet (fingerspelling) 2007.

