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Abstract 

 
A real-time sign language translator is an important 

milestone in facilitating communication between the deaf 
community and the general public. We hereby present the 
development and implementation of an American Sign 
Language (ASL) fingerspelling translator based on a 
convolutional neural network. We utilize a pre-trained 
GoogLeNet architecture trained on the ILSVRC2012 
dataset, as well as the Surrey University and Massey 
University ASL datasets in order to apply transfer 
learning to this task. We produced a robust model that 
consistently classifies letters a-e correctly with first-time 
users and another that correctly classifies letters a-k in a 
majority of cases. Given the limitations of the datasets and 
the encouraging results achieved, we are confident that 
with further research and more data, we can produce a 
fully generalizable translator for all ASL letters. 
 

1. Introduction 
American Sign Language (ASL) substantially facilitates 

communication in the deaf community. However, there 
are only ~250,000-500,000 speakers which significantly 
limits the number of people that they can easily 
communicate with [1]. The alternative of written 
communication is cumbersome, impersonal and even 
impractical when an emergency occurs. In order to 
diminish this obstacle and to enable dynamic 
communication, we present an ASL recognition system 
that uses Convolutional Neural Networks (CNN) in real 
time to translate a video of a user’s ASL signs into text. 
Our problem consists of three tasks to be done in real 
time: 
 

1. Obtaining video of the user signing (input) 
2. Classifying each frame in the video to a letter 
3. Reconstructing and displaying the most likely word 

from classification scores (output) 
 

From a computer vision perspective, this problem 
represents a significant challenge due to a number of 
considerations, including: 
 
• Environmental concerns (e.g. lighting sensitivity, 

background, and camera position) 
• Occlusion (e.g. some or all fingers, or an entire hand 

can be out of the field of view) 
• Sign boundary detection (when a sign ends and the 

next begins) 
• Co-articulation (when a sign is affected by the 

preceding or succeeding sign) 
 

While Neural Networks have been applied to ASL letter 
recognition (Appendix A) in the past with accuracies that 
are consistently over 90% [2-11], many of them require a 
3-D capture element with motion-tracking gloves or a 
Microsoft Kinect, and only one of them provides real-time 
classifications. The constraints imposed by the extra 
requirements reduce the scalability and feasibility of these 
solutions.  

Our system features a pipeline that takes video of a user 
signing a word as input through a web application. We 
then extract individual frames of the video and generate 
letter probabilities for each using a CNN (letters a through 
y, excluding j and z since they require movement). With 
the use of a variety of heuristics, we group the frames 
based on the character index that each frame is suspected 
to correspond to. Finally, we use a language model in 
order to output a likely word to the user. 

2. Related Work 

ASL recognition is not a new computer vision problem. 
Over the past two decades, researchers have used 
classifiers from a variety of categories that we can group 
roughly into linear classifiers, neural networks and 
Bayesian networks [2-11]. 

While linear classifiers are easy to work with because 
they are relatively simple models, they require 
sophisticated feature extraction and preprocessing 
methods to be successful [2, 3, 4]. Singha and Das 
obtained accuracy of 96% on 10 classes for images of 
gestures of one hand using Karhunen-Loeve Transforms 
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[2]. These translate and rotate the axes to establish a new 
coordinate system based on the variance of the data. This 
transformation is applied after using a skin filter, hand 
cropping and edge detection on the images. They use a 
linear classifier to distinguish between hand gestures 
including thumbs up, index finger pointing left and right, 
and numbers (no ASL). Sharma et al. use piece-wise 
classifiers (Support Vector Machines and k-Nearest 
Neighbors) to characterize each color channel after 
background subtraction and noise removal [4]. Their 
innovation comes from using a contour trace, which is an 
efficient representation of hand contours. They attain an 
accuracy of 62.3% using an SVM on the segmented color 
channel model. 

Bayesian networks like Hidden Markov Models have 
also achieved high accuracies [5, 6, 7]. These are 
particularly good at capturing temporal patterns, but they 
require clearly defined models that are defined prior to 
learning. Starner and Pentland used a Hidden Markov 
Model (HMM) and a 3-D glove that tracks hand 
movement [5]. Since the glove is able to obtain 3-D 
information from the hand regardless of spatial 
orientation, they were able to achieve an impressive 
accuracy of 99.2% on the test set. Their HMM uses time-
series data to track hand movements and classify based on 
where the hand has been in recent frames. 

Suk et al.  propose a method for recognizing hand 
gestures in a continuous video stream using a dynamic 
Bayesian network or DBN model [6]. They attempt to 
classify moving hand gestures, such as making a circle 
around the body or waving. They achieve an accuracy of 
over 99%, but it is worth noting that all gestures are 
markedly different from each other and that they are not 
American Sign Language. However, the motion-tracking 
feature would be relevant for classifying the dynamic 
letters of ASL: j and z. 

Some neural networks have been used to tackle ASL 
translation [8, 9, 10, 11]. Arguably, the most significant 
advantage of neural networks is that they learn the most 
important classification features.  However, they require 
considerably more time and data to train. To date, most 
have been relatively shallow. Mekala et al. classified video 
of ASL letters into text using advanced feature extraction 
and a 3-layer Neural Network [8]. They extracted features 
in two categories: hand position and movement. Prior to 
ASL classification, they identify the presence and location 
of 6 “points of interest” in the hand: each of the fingertips 
and the center of the palm. Mekala et al. also take Fourier 
Transforms of the images and identify what section of the 
frame the hand is located in. While they claim to be able 
to correctly classify 100% of images with this framework, 
there is no mention of whether this result was achieved in 
the training, validation or test set. 

Admasu and Raimond classified Ethiopian Sign 
Language correctly in 98.5% of cases using a feed-

forward Neural Network [9]. They use a significant 
amount of image preprocessing, including image size 
normalization, image background subtraction, contrast 
adjustment, and image segmentation. Admasu and 
Raimond extracted features with a Gabor Filter and 
Principal Component Analysis. 

The most relevant work to date is L. Pigou et al’s 
application of CNN’s to classify 20 Italian gestures from 
the ChaLearn 2014 Looking at People gesture spotting 
competition [11]. They use a Microsoft Kinect on full-
body images of people performing the gestures and 
achieve a cross-validation accuracy of 91.7%. As in the 
case with the aforementioned 3-D glove, the Kinect allows 
capture of depth features, which aids significantly in 
classifying ASL signs. 

3. Approach and Methods 

3.1. Classifier Development 

3.1.1 Transfer Learning 

Our ASL letter classification is done using a 
convolutional neural network (CNN or ConvNet). CNNs 
are machine learning algorithms that have seen incredible 
success in handling a variety of tasks related to processing 
videos and images. Since 2012, the field has experienced 
an explosion of growth and applications in image 
classification, object localization, and object detection. 

A primary advantage of utilizing such techniques stems 
from CNNs abilities to learn features as well as the 
weights corresponding to each feature. Like other machine 
learning algorithms, CNNs seek to optimize some 
objective function, specifically the loss function. We 
utilized a softmax-based loss function: 
 

 (1) 

 (2) 

 
 

Equation (2) is the softmax function. It takes a feature 
vector z for a given training example, and squashes its 
values to a vector of [0,1]-valued real numbers summing 
to 1. Equation (1) takes the mean loss for each training 
example, xi, to produce the full softmax loss.  

Using a softmax-based classification head allows us to 
output values akin to probabilities for each ASL letter. 
This differs from another popular choice: the SVM loss. 



 

227 

Using an SVM classification head would result in scores 
for each ASL letter that would not directly map to 
probabilities. These probabilities afforded to us by the 
softmax loss allow us to more intuitively interpret our 
results and prove useful when running our classifications 
through a language model.  

3.1.2 Transfer Learning 

Transfer Learning is a machine learning technique 
where models are trained on (usually) larger data sets and 
refactored to fit more specific or niche data. This is done 
by recycling a portion of the weights from the pre-trained 
model and reinitializing or otherwise altering weights at 
shallower layers. The most basic example of this would be 
a fully trained network whose final classification layer 
weights have been reinitialized to be able to classify some 
new set of data. The primary benefits of such a technique 
are its less demanding time and data requirements. 
However, the challenge in transfer learning stems from the 
differences between the original data used to train and the 
new data being classified. Larger differences in these data 
sets often require re-initializing or increasing learning 
rates for deeper layers in the net.  
 
3.1.3 Caffe and GoogLeNet 

We employed Caffe, a deep learning framework [12], in 
order to develop, test, and run our CNNs. Specifically, we 
used Berkeley Vision and Learning Center’s GoogLeNet 
pre-trained on the 2012 ILSVRC dataset. This net output 
three different losses at various depths of the net and 
combines these losses prior to computing a gradient at 
training time. 
 
3.2. General Technique 

Our overarching approach was to fine-tune a pre-trained 
GoogLeNet. Our data is composed exclusively of hands in 
24 different orientations, while the ILSVRC data is 
composed of 1000 uniquely different objects or classes. 
Even though the ILSVRC data has some classes that are 
quite similar to each other (e.g. various breeds of dogs), 
our data was comprised of the same object merely 
positioned and oriented in different ways. Considering the 
stark differences between our data and the data that 
GoogLeNet was pre-trained on, we decided to test the 
effectiveness of altering a variety of the pre-trained 
weights at different depths. We amplified learning rates by 
a factor of ten and completely reset weights in the first 
one, two or three layers of the net using Xavier 
initialization.  
  
3.3. Developing our pipeline 

In order to obtain images of the user signing in real-
time, we created a web application that is able to access a 

native camera on a laptop through the browser solely 
using HTML and JavaScript. This was done using an API 
created by the World Wide Web Consortium (W3C). 
Image capture rate was a massive problem we struggled 
with. We looked to balance network request speeds with 
computation speeds of our neural network (discussed 
below). The latter proved to be the primary bottleneck, 
forcing us to settle on an image capture rate of one frame 
per second. Increasing our capture rate created larger 
delays in giving the user feedback than we were satisfied 
with.  

Our web application sends images to our server one by 
one. Each time, the server classifies the image and 
presents probabilities for each letter. It keeps a running 
cache of classified images. When it feels confident about 
the sign being made by the user, it records the top-5 most 
likely letters based on the cache. It then clears the cache, 
and lets the user know to move on to the next letter. 

Once the user has indicated that they’re finished 
signing, the top-5 letters for each position in the spelled 
word are passed to a custom unigram language model 
based on the Brown Corpus. The model takes into account 
substitution costs for similar-looking letters that are often 
confused by the classifier as well as the probabilities for 
the top-5 letters at each position in the word. Using these, 
single word unigram probabilities and a handful of other 
heuristics, it returns the optimal word to the user.  

4. Datasets and Features 

  

  
Fig. 1. Dataset examples. Left: Surrey University. Right: 
Massey University. Top left: y. Bottom left: k. Top right: i. 
Bottom right: e. 

 
4.1. Dataset Description 

The ASL FingerSpelling Dataset from the University of 
Surrey’s Center for Vision, Speech and Signal Processing 
is divided into two types: color images (A) and depth 
images (B). To make our Translator accessible through a 
simple web-app and laptop with a camera, we chose to 
only use the color images. They are close-ups of hands 
that span the majority of the image surface (Fig. 1). 
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Dataset A comprises the 24 static signs of ASL captured 
from 5 users in different sessions with similar lighting and 
backgrounds. The images are in color. Their height-to-
width ratios vary significantly but average approximately 
150x150 pixels. The dataset contains over 65,000 images. 

The Massey University Gesture Dataset 2012 contains 
2,524 close-up, color images that are cropped such that the 
hands touch all four edges of the frame. The hands have 
all been tightly cropped with little to no negative space 
and placed over a uniform black background. 
Coincidentally, this dataset was also captured from five 
users. The frames average approximately 500x500 pixels. 

Since there was little to no variation between the images 
for the same class of each signer, we separated the datasets 
into training and validation by volunteer. Four of the five 
volunteers from each dataset were used to train, and the 
remaining volunteer from each was used to validate. We 
opted not to separate a test set since that would require us 
to remove one of four hands from the training set and thus 
significantly affect generalizability. Instead, we tested the 
classifier on the web application by signing ourselves and 
observing the resulting classification probabilities 
outputted by the models. 

4.2. Pre-processing and data augmentation 

Both datasets contain images with unequal heights and 
weights. Hence, we resize them to 256x256 and take 
random crops of 224x224 to match the expected input of 
the GoogLeNet. We also zero-center the data by 
subtracting the mean image from ILSRVC 2012. Since the 
possible values in the image tensors only span 0-255, we 
do not normalize them. Furthermore, we make horizontal 
flips of the images since signs can be performed with 
either the left of the right hand, and our datasets have 
examples of both cases. 

Since the difference between any two classes in our 
datasets is subtle compared to ILSRVC classes, we 
attempted padding the images with black pixels such that 
they preserved their aspect ratio upon resizing. This 
padding also allows us to remove fewer relevant pixels 
upon taking random crops. 

5. Experiments, Results and Analysis 

5.1. Evaluation Metric 
We evaluate two metrics in order to compare our results 

with those of other papers. The most popular criterion in 
the literature is accuracy in the validation set, i.e. the 
percentage of correctly classified examples. One other 
popular metric is top-5 accuracy, which is the percentage 
of classifications where the correct label appears in the 5 
classes with the highest scores. 

Additionally, we use a confusion matrix, which is a 
specific table layout that allows visualization of the 
performance of the classification model by class. This 

allows us to evaluate which letters are the most 
misclassified and draw insights for future improvement. 

5.2. Experiments 

For each of the following experiments below, we 
trained our model on letters a-y (excluding j). After some 
initial testing, we found that using an initial base learning 
rate of 1e-6 worked fairly well in fitting the training data - 
it provided a steady increase in accuracy and seemed to 
successfully converge. Once the improvements in the loss 
stagnated, we manually stopped the process and decreased 
the learning rate in order to try and increase our 
optimization of our loss function. We cut our learning rate 
by factors ranging from 2 to 100. 

Furthermore, we used the training routine that 
performed best with real users on our web application 
(‘2_init’). We also built models to only classify letters a-k 
(excluding j) or a-e to evaluate if we attained better results 
with fewer classes.  
 
1 layer reinitialization and learning rate multiple 
increase (‘1_init’): 
We initialized this model with the pre-trained weights 
from the GoogLeNet trained on ILSVRC 2012. We then 
reinitialized all the classification layers with Xavier 
initialization and increased the learning rate multiple of 
only this layer in order to help it learn faster than the rest 
of the net’s pre-trained layers. 
 
2 layer reinitializaiton and learning rate multiple 
increase (‘2_init’) 
We initialized this model with the pre-trained weights 
from the GoogLeNet trained on ILSVRC 2012. We then 
reinitialized all the classification layers with Xavier 
initialization and appropriately adjusted their dimensions 
to match our number of classes. We increased the learning 
rate multiples for the top three layers beneath each 
classification head.  
 
1 layer reinitialization, learning rate multiple increase, 
and increased batch size (‘1_init’) 
We initialized this model with the pre-trained weights 
from the GoogLeNet trained on ILSVRC 2012. We then 
reinitialized all the classification layers with Xavier 
initialization and increased the learning rate multiple of 
only this layer in order to help it learn faster than the rest 
of the net’s pre-trained layers. Finally, we drastically 
increased the batch size from 4 to 20. 
 
1 layer reinitialization, uniform learning rate (‘full_lr’) 
We initialized this model with the pre-trained weights 
from the GoogLeNet trained on ILSVRC 2012. We then 
reset all the classification layers with Xavier initialization 
but kept learning rate constant through the net.  
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5.3. Results 

The results for all models are summarized below. 
 

 
 

 
 
 

   
 
 
 
 
 
 
 
 
               
 

Table 1. Optimal accuracy ranges for all models 
       trained on each letter subset. 
 

 
Fig. 2: Epochs vs. validation accuracy for all models trained on 
letters a-y (excluding j) 
 

 
Fig. 3: Epochs vs. training loss for all models trained on letters a-
y (excluding j) 

 
 
Fig. 4: Epochs vs. validation accuracy for the 2_init models 
trained on each letter subset (excluding j) 
 

 
 
Fig. 5: Epochs vs. training loss for the 2_init models trained on 
each letter subset (excluding j) 
 

 
 
Fig. 6: Confusion matrix for the 2_init model trained on letters a-
y (excluding j) 
 

Model Top-1 Val 
Accuracy 

Top-5 Val 
Accuracy 

a - y [1_init] 0.6847 0.9163 

a - y [2_init] 0.6585 0.9043 

a - y [batch] 0.6965 0.9076 

a - y [full_lr] 0.7200 0.9098 

a - k [2_init] 0.7430 0.897 

a - e [2_init] 0.9782 1.000 
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Fig. 7: Confusion matrix for the 2_init model trained on letters a-
k (excluding j) 
 

 
 
Fig. 8: Confusion matrix for the 2_init model trained on letters a-
e 

5.4. Discussion 

5.4.1 Loss and Accuracy 

Our losses (Fig. 3) were very noisy in the ‘1_init’ and 
‘2_init’ models. Our space and time constraints initially 
required us to choose a less-than-optimal batch size value 
of 4, resulting in the noisy loss. However, after seeing 
these results, we trained a net using a Lighting Memory-
Mapped Database (LMDB) and were able to increase the 
batch size to 20. This allowed us to reduce our loss more 
smoothly and monotonically, in addition to more quickly 
converging on a validation accuracy. Similarly, the 
‘full_train’ model had uniform learning rates throughout 
each layer in the net, allowing us to learn more quickly. 

This is likely due to the fact that we are able to more 
easily alter the pre-trained weights in the GoogLeNet and 
correct for the significant differences between the datasets. 
While this leads to a tighter fitting of the training data, it 
did not seem to result in lower validation accuracy than 
those attained with other models.  After analyzing many of 
the images from our dataset, we concluded that they were 
most likely produced by taking video frames of 
individuals making ASL signs in the same room and in a 
single sitting. The lack of variation in our data set explains 
the similar validation accuracy in our ‘full_train’ model 
relative to others.  

Interestingly, changing our re-initialization scheme and 
learning rates had little effect on the final top-1 and top-5 
accuracies: the largest difference between two models was 
less than 7% on top-1 and just over 1% on top-5 accuracy. 
We did notice, however, that the models utilized that only 
re-initialized weights at the classification layer strictly 
outperformed the 2-layer re-initialization model. 
Notwithstanding the fact that the distinction between 
classes in our dataset and the ILSVRC 2012 dataset are 
starkly different, this is not unexpected because of the high 
quality of the features extracted by GoogLeNet. It was 
pre-trained on significantly more images than we had 
available in our dataset.  

 There was little difference between the ‘1_init’ and 
‘2_init’ models. Given the fact that GoogLeNet is 22 
layers deep, intuition would lead us to believe that 
reinitializing 2 layers (versus reinitializing 1 and 
increasing the learning rate multiple on another) would not 
prove to be incredibly advantageous in fine-tuning our 
model to our validation set. This was confirmed in our 
experiments.  

We qualitatively tested the four models on real users 
with our web application (see below). We decided to take 
the ‘2_init’ model and create classifiers for letters a – e 
and a – k (excluding j) since we expected it would be less 
difficult to distinguish between fewer classes.  

Not surprisingly, there was a direct, negative correlation 
between the validation accuracies attained using the 
‘2_init’ model, and the number of letters we sought to 
classify  (Fig. 4). We attained a validation accuracy of 
nearly 98% with five letters and 74% with ten.  

5.4.2 Confusion matrices (validation) 

The confusion matrices reveal that our accuracy suffers 
primarily due to the misclassification of specific letters 
(e.g. k and d in Fig. 7). Often the classifier gets confused 
between two or three similar letters or heavily prefers one 
of the two in such a pair (e.g. g/h in Fig. 7 and m/n/s/t in 
Fig. 6).  

The confusion matrix for the ten-letter model reveals 
that with the exception of classifying k, it performed 
reasonably well. We believe that there are two main 
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reasons for this result. First, in the dataset, k is signed from 
various different perspectives - from the front to the back 
of the hand facing the camera - and rotations - with the 
fingers pointing up and to the sides. The only consistent 
aspect is the center mass of the hand in all pictures, which 
is precisely what a resembles. Second, in the range a-k, k 
it has features that are very similar to letters d, g, h, and i – 
it can be constructed by a combination of segments of 
these letters. Hence, if the classifiers over-relied on any of 
these features individually, it would be easy to misclassify 
k as any of them and would make it harder to learn the 
latter. 

5.4.3 Real-time user testing 

As aforementioned, we initially tested our four a – y 
classification models on real users through our web 
application. This consisted of testing on images in a wide 
range of environments and hands. A key observation was 
that there is no significant correlation between the final 
validation accuracies of the models and their real-time 
performance on our web application. For example, 
‘full_lr’ classified an input as a in over half the cases with 
> 0.99 probability, almost independently of the letter we 
showed it.  

It was very apparent that the ‘2_init’ model outshined 
the rest even though it produced the lowest validation 
accuracy. However, it still failed to consistently predict the 
correct letter in the top-5. For this reason, we created the 
models alluded to above with five (a – e) and ten (a – k, 
excluding j) classes. 

Testing the classifiers with fewer classes on the live 
web application also yielded significantly different results 
from testing on the validation set. On ten-letter 
classification, some letters that were classified correctly in 
> 70% of cases (e.g. b, c, Fig. 7) were almost always 
absent in the top-5 predictions. Moreover, some letters 
were noticeably overrepresented in the predictions, like a 
and e (Fig. 7). We attribute this to the fact that neither of 
these has any fingers protruding from the center of the 
hand. They will thus share the central mass of the hand in 
the pictures with every other letter without having a 
contour that would exclude them.  

6. Conclusions and Future Work 

6.1. Conclusions  

We implemented and trained an American Sign 
Language translator on a web application based on a CNN 
classifier. We are able to produce a robust model for 
letters a-e, and a modest one for letters a-k (excluding j). 
Because of the lack of variation in our datasets, the 
validation accuracies we observed during training were 
not directly reproducible upon testing on the web 
application. We hypothesize that with additional data 

taken in different environmental conditions, the models 
would be able to generalize with considerably higher 
efficacy and would produce a robust model for all letters. 

6.2. Future Work 

Additional Models: We focused our efforts on 
optimizing GoogLeNet, but it would be worth exploring 
different nets that have also been proven effective at 
image classification (e.g. a VGG or a ResNet 
architecture). 

Image preprocessing: We believe that the classification 
task could be made much simpler if there is very heavy 
preprocessing done on the images. This would include 
contrast adjustment, background subtraction and 
potentially cropping. A more robust approach would be to 
use another CNN to localize and crop the hand.  

Language Model Enhancement: Building a bigram and 
trigram language model would allow us to handle 
sentences instead of individual words. Along with this 
comes a need for better letter segmentation and a more 
seamless process for retrieving images from the user at a 
higher rate.  
 
WEBAPP DEMO: https://youtu.be/79Fmu0TZ9xc 

7. Appendix 

 
American sign language fingerspelling alphabet [13] 
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