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Abstract

This paper presents a combinatorially efficient Neural
Network based solution for approaching the Jigsaw puz-
zle problem. We formally define the Jigsaw Puzzle problem
as follows: given an image that has been divided up into
evenly-sized pieces and shuffled, we seek to reconstruct the
original image from these pieces. This task is non-trivial
since the solution space of an N−piece puzzle is N !. State-
of-the-art Neural Network approaches to solving this task
skirt the combinatorial solution space by only predicting a
subset of solutions. By combining a visual feature extrac-
tion pipeline with a Pointer Network for combinatorial rea-
soning, this project proposes a Neural Network to reassem-
ble arbitrary Jigsaw Puzzles of any size configuration. Us-
ing our best network architecture and hyper-parameter con-
figuration our network is able to achieve 77% accuracy on
2 × 2 class of puzzles and 49% on the 2 × 3 puzzles. Fur-
thermore, by solving the jigsaw puzzle task as a pretext task
which requires no manual labeling, we show that parts of
our network can be re-purposed to help solve classification
problems. Thus, our network serves as both a Jigsaw Puzzle
solver and an Unsupervised pre-training mechanism.

1. Introduction

Jigsaw Puzzles are a ubiquitous class of puzzles and
have been present for the last few centuries. The variety
of tasks involved in solving Jigsaw Puzzles – detecting the
piece, clustering similar pieces and finding adjacent pieces
– make this problem an interesting one to solve. Addition-
ally, the combinatorial explosion of even a small Jigsaw
puzzle presents it as an important vision task for Neural
Networks. For example, a 7× 7 puzzle has 49! ' 6× 1062

possible solutions.
The Jigsaw puzzle problem has potential applications

in recovering shredded documents and reconstructing ar-
chaeological artifacts amongst others. Though there are
other approaches to solving this problem such Genetic Al-

gorithms (GA), we seek discover a neural network-based
approach. Since solving this task involves a lot of spa-
tial reasoning, we hope to show that the networks we train
could be used in Transfer Learning for other tasks that re-
quire spatial reasoning. Before delving into the approach to
this problem, we define the task formally.

1.1. Problem Definition

Figure 1: A high-level representation of our problem.

Our Jigsaw Solver will take as input an arbitrary im-
age split into N = H ×W non-overlapping, equally-sized
pieces in the same orientation as the original image. Specif-
ically, we can define this input as

I = (c1, c2, . . . cN )

where I is the stacked representation of the N pieces. our
model will return an ordering, X such that

X = (x1, x2, . . . , xN ) = σ(1, 2, . . . , N)

such that xi is the index of the image piece that should be
at the ith position in the proposed solution. This ordering,
in conjunction with the input, is sufficient to reconstruct the
network’s solution (see Figure 1).

Our main contribution in this paper is to provide a first
step towards tractably solving combinatorial type problems
in the space of Computer Vision. In summary, to tackle
the Jigsaw Puzzle problem, we propose using a pretrained
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model (VGG [10] or Resnet [21]) as a Feature Extractor to
generate embeddings of each ci and pass this embedding
though a Pointer Network [13] that outputs an ordering of
this input sequence. We discuss this later in detail.

2. Related Work
A variety of work has been done in the field of solv-

ing Jigsaw Puzzles using different approaches ranging from
Genetic Algorithms [4] to Linear Programming [16]. One
of the stronger results was reported by Sholomon et al. in
[20]. This solution used the Genetic Algorithm paradigm
with a novel crossover function that was able to guaran-
tee a better ‘child’ solution given two ‘parent’ solutions to
the problem. Their current solution produces solutions be-
tween 80 − 90% accuracy with piece numbers as large as
3300. Son et al. improved on Sholomon et al.’s solution us-
ing ‘loop constraints’ by iteratively building loops of puzzle
pieces that are consistent [22]. They reported accuracies of
around 90 − 96%. Another approach to solving this prob-
lem was proposed by Yu et al. who formulated this problem
as a Linear Program-based approach to this challenge. They
were able to match that state-of-the-art with accuracy scores
[28].

Whilst these solutions give very high accuracies, they are
not feasible for real time deployment since they are slow at
test time. Given their recent successes at tackling problems
in a variety of fields [15] [2] [17] [19] we are convinced that
Neural Network based approaches, if fully developed, have
the potential to achieve similar accuracies and drastically
speed up test time performance since evaluation on a puzzle
would involve a single pass.

One of the key ideas in training Neural Networks is the
concept of Unsupervised-Pretraining [7]. In unsupervised
pre-training, Neural Networks are primed by first solving
a task on the data that does not require labels. Noroozi
and Favoro [18] attempted a solution to the Jigsaw Puzzle
Problem as a means of learning unsupervised representa-
tions as pre-training for image classification tasks. They
tackled 3 × 3 puzzles and address the issue of the large so-
lution space by sampling a subset of 100 permutations from
the solution space of 362880 selected based on their maxi-
mizing Hamming Distance between the 100 configuration.
Whilst this approach allowed them to prove that the Jigsaw
Puzzle problem could be used as a pre-training task, it does
not actually solve the Jigsaw Puzzle Problem.

Recent work by Vinyals et al. [26] introduced a new class
of Recurrent Neural Network Architectures called Pointer
Networks. These Networks are able to tackle combinato-
rial type problems. By exploiting the attention mechanism
[27], Pointer Networks make predictions over the inputs at
every time-step instead of attempting to explicitly predict a
member of the factorial solution space. In their paper, they
were able to achieve then state-of-the-art performance on

the Traveling Salesman [12] and Convex Hull problems [6].
Our paper seeks a novel application of their architecture to
the Jigsaw Puzzle Problem.

3. Methods and Architecture
Given an H ×W puzzle, our model takes as input a se-

quence of N = H ×W pieces:

X = (x1, x2, . . . , xN )

Where each xi is an individual image puzzle piece. We seek
to learn a function π(X) that takes X as input and outputs
a permutation

π(X) = σ(1, 2, . . . , N)

that corresponds to the order in which the input image
pieces should be sorted to reconstruct the original image.
In order to achieve this, we take a two-staged approach. We
begin by using a Convolutional Neural Network Architec-
ture on each of the image pieces xi to extract relevant visual
cues λi.

Given that the solution space of the Jigsaw Puzzle Prob-
lem is factorially dependent on the number of inputs, we
cannot simply use the naive approach of combining our vi-
sual feature extractor with a Softmax output layer with size
equal to the solution space.

Building on the work of Vinyals et al. [26], we take the
more tractable approach of using a Recurrent Neural Net-
work architecture to produce an output sequence with ele-
ments that are discrete tokens corresponding to positions in
an input sequence. Our Pointer Network, P [26] takes in a
sequence of visual features

λ = (λ1, λ2, . . . , λN )

and outputs our desired sorting permuation

P (λ) = σ(1, 2, . . . , N)

. Figure 2 summarizes our model architecture.

3.1. CNN Architecture

Our visual pipeline consists of a Convolutional Neural
Network pretrained on the ImageNet Classification task and
a Fully Connected Layer (which we dubbed FC Jigsaw) that
mediates the visual pipeline and Pointer Network. Since
time and resources constrained how much data we could
train our Jigsaw puzzle solver on, we decided to incorporate
a pretrained network as a means of expanding our model’s
predictive capacity. We experimented with Resnet 50 [10]
and VGG 16 [21] pretrained architectures.

We feed each puzzle piece xi through the pretrained net-
work and extract features from the last layer before any
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Figure 2: Our architecture for solving jigsaw puzzle problems. Input image chips are projected into a relevant feature space
by a CNN visual feature extractor. We then use a Pointer Network to predict a sorting permutation.

fully connected layers. This was necessary since we used
smaller image sizes than the networks were trained on. We
extracted features from the layer before Resnet 50’s soft-
max layer of size 8192 and the POOL5 layer of VGG 16
of size 2048. Having gotten these embeddings, we pass
them through FC Jigsaw (highlighted in green in Figure
2). The FC Jigsaw layer was responsible for selecting and
transforming the parts of the VGG and Resnet embeddings
relevant for solving the Jigsaw problem. It outputs a sum-
mary λi of the visual features in xi extracted from VGG
and Resnet. We experimented with the output dimension of
FC Jigsaw.

3.2. Pointer Network

Given the set λ of visual summaries of each of the puzzle
tiles, our Jigsaw Puzzle solver has to reason across all the
tiles to correctly reconstruct the original image. Whilst our
visual pipeline thinks locally about each image, joint rea-
soning is essential to predicting the correct output sequence
to reconstruct the image. We solved this part of the problem
using a Pointer Network. [26]

A Pointer Network is a Sequence to Sequence model
[23] where the decoder chooses or points to a member of
the input sequence at each time-step via an attention mech-
anism [27]. Our Encoder, summarized in Figure 2 is a 2-
layer bidirectional Recurrent Neural Network with Gated
Recurrent Unit (GRU) cells [3]. We used a bidirectional
architecture to make our model more robust to input puz-
zle ordering. The encoding, ej ∈ E, for each visual input
λj is a concatenation of the forward and backward vectors

obtained from the second bidirectional layer. The final hid-
den state of the encoder is fed as seed to the decoder which
decoder maintains a hidden state di at each time-step.

Instead of directly predicting a distribution over the com-
binatorial solution space, the decoder arrives at a solution
configuration by giving a probability distribution over the
input sequence at each time-step. Let Ci be the distribution
over which image piece occupies position i in the correctly
reconstructed puzzle.

uji = νT tanh(W1ej +W2di)

P (Ci|C1, . . . , Ci−1,E) = softmax(ui)

W1 and W2 are trainable weights of the attention module.
Thus, if ek is pointed to at time-step i, (i.e argmaxCi =

k) then it means that the network predicts that puzzle piece
k should go into position i in order to reconstruct the image.
At time-step i+1, we feed the visual embedding of the pre-
dicted piece λk back into the decoder as input to continue
inference.
Our loss function is a time-distributed Softmax loss over the
output set C = {C1, . . . , CN} and our network is end-to-
end trainable via back-propagation.

4. Dataset
Since both of our feature extractors VGGNet and ResNet

were pre-trained on ImageNet, we needed to use a differ-
ent dataset to train/test our network on. This is impor-
tant because we will need a different distribution in order
to truly assess the performance on the unsupervised pre-
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training task. To this end, we chose Caltech-256 Image Set
[9].

Caltech-256 is a collection of 30608 images of 256 dif-
ferent categories, with more than 80 images in each cat-
egory. In addition to offering a different distribution, its
smaller size and fewer categories makes this dataset more
manageable, and thus a better option. As a benchmark, we
split the dataset into: 10249 for training, 1024 for valida-
tion, and 512 for testing.

Figure 3: Subset of Caltech-256 Images.

4.1. Data Preprocessing

We initially resized the images to:

[H ∗ (64 + ε)]× [W ∗ (64 + ε)]× 3

Then, divided evenly them intoH×W cells. After that, we
randomly sampled a 64 × 64 patch from each cell that we
feed into our network. Such sampling avoids the network
from over-fitting by just learning the edges.

In addition to resizing the image, we subtract
the specified VGG Red, Green and Blue averages
(123.68, 116.78, 103.94) respectively from the image be-
fore passing it through VGG.

5. Experiments
5.1. Output Postprocessing

Our network described above could predict the same
puzzle piece for multiple positions at test time. We know
however that each piece appears only once in the correct
reconstruction permutation. We therefore have to perform
post-processing on the network output to fit this constraint
of the problem. During the generation of the output se-
quence for each puzzle piece, we force our model to avoid
predicting pieces that have already been assigned an index.
We do this by setting the logits of already predicted or as-
signed puzzle pieces to be−∞. This ensures that we do not
predict that piece again.

5.2. Metrics

The primary metrics we used in assessing the perfor-
mance of model on the Jigsaw Puzzle Task were:

1. Loss: At each time step in our prediction, we use Soft-
max loss on our model’s prediction for that step. After
predicting the full sequence f , we define the total loss
as

L =
1

N + 1

N∑
i=0

Li

where N is the number of pieces of the puzzle and

Li = − log

(
ef

i
yi∑

j e
fi
j

)
,

f ij is probability that the jth puzzle piece falls into
the ith position in the correct reconstruction of the in-
put. We augment our output space with an END token
when predicting the sequence. We found that this helps
the network converge better. Hence, there are N + 1
steps during prediction.

2. Direct Accuracy: Given the model’s predicted se-
quence, Sm and the target sequence, St for a puzzle,
we define direct accuracy as

Ad =
1

N + 1

N∑
i=0

1[St(i) = Sm(i)].

This metric measures the ability of the model to predict
correctly the absolute position of a puzzle piece. We
can see from this that a model that randomly assigns
a number n ∈ {0, 1, 2, . . . N} to each output sequence
should have E[Ad] = 1

N+1 . This metric was motivated
by Sholomon et al.’s work in [20].

3. Neighbor Accuracy: Like the direct accuracy metric,
this function was motivated by [20]. Formally, given
the 2D representation of the model’s solution gs and
target solution gt, we have that

An = γ ·
H−2∑
i=0

W−2∑
j=0

(Γ(i+ 1, j) + Γ(i, j + 1))

where γ = 1
2(W−1)(H−1) and

Γ(i, j) = 1[gt(i, j) = gs(i, j)].

This metric measures the ability of our model to cor-
rectly predict the position of a piece relative to its
neighbors in the the correct configuration.
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5.3. Hyperparameter Tuning

The hyperparameters we chose to tune were the learn-
ing rate, number of RNN layers, size of the RNN and Jig-
saw Fully Connected Dimension Size and optimization al-
gorithm. In general, we found that higher batch sizes pro-
duced higher accuracies but we had to cap our batch size at
64 due to memory considerations.

5.3.1 Learning Rate

The first hyperparameter we tuned was the learning rate.
We considered learning rates between [10−6, 1] and found
the best learning rate to be roughly 10−4 with no signifi-
cant difference in performance at small deltas around this
learning rate.

5.3.2 Number of RNN Layers and RNN Cell

Once we fixed the learning rate, we considered the impact of
the number of RNN layers on the performance of the model.
We observed that a 2−layer RNN produced the best results.
We posit that the two layer network has a greater capacity
for reasoning about the Jigsaw problem since chaining non-
linear activations increases our network’s expressive power.
Increasing beyond this did not lead to any improvement and
made training much more fragile. Additionally, we did not
observe any significant improvement when using the LSTM
Cell [11]. We defaulted to Gated Recurrent Unit (GRU) [3].

5.3.3 RNN and FC Jigsaw Size

We performed grid search over RNN sizes within the range
[50, 1000] and sizes in the range [128, 1024] for the output
dimension of FC Jigsaw (shown in green in Figure 2). We
observed that, in general, the RNN size mattered more than
the Fully Connected (FC) size. One possible explanation is
that the RNN will have to reason about allN pieces whereas
the FC layer only has to reason about each image piece.
Hence, a higher capacity RNN will perform significantly
better whereas a higher FC size has a marginal effect for
higher sizes.

Figure 5 shows the dependence of the output dimension
of FC Jigsaw on direct accuracy of our validation set on a
2x2 puzzle. In general we observe a decreasing accuracy
with increasing size. We hypothesize that the nature of the
FC output size curve is due to the fact VGG and Resnet,
are trained on significantly more classes (ImageNet 1000)
[5] than our Caltech 256 [8] dataset. The embeddings pro-
duced thus contain features that might not be relevant to
solving the Jigsaw problem on our dataset, and thus com-
pressing the information from 2048 (VGG) / 8192 (Resnet)
units to 256 allows our network to distill only the required
information for inference.

Due to runtime and memory constraints, we could not go
higher than RNN size of 3200. The results below describe
our observation.

Figure 4: Search over RNN Size with fixed FC Dimension
of 512.

Figure 5: Search over FC Dimension with fixed RNN Size
of 1000.

5.4. Performance on Different Puzzle Sizes

We evaluated our model on different Jigsaw Puzzle sizes.
Figures 6 and 7 give Direct and Neighbor Accuracies on
different sized puzzle tasks. In general, we find that we are
able to perform significantly better than the random base-
line for smaller puzzles but this gap drops as the puzzle size
gets larger. Using Resnet as a feature extractor generally
performed better than VGG. This is in agreement with re-
sults from a host of different Computer vision tasks [14].
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Figure 6: Direct Accuracies of Different Puzzle Sizes.

Figure 7: Neighbor Accuracies of Different Puzzle Sizes.

While the accuracy drops as the number of pieces in-
creases, the rate at which it drops was not anticipated. We
have a few hypotheses explaining why this is the case. One
of them is that the nature of the problem has proved more
difficult than expected for our network. Pointer Networks
have traditionally been used to solve problems with lower
dimensional input spaces - Convex Hull, Delauney Triangu-
lation [26] in 2 dimensions. Thus, we suspect that scaling to
dimensionality on the scale of this vision problem requires
a more involved augmentation of the current architecture.

Furthermore, we conjecture that it would have been bet-
ter to train a full model from scratch rather than use VGG or
Resnet as a feature extractor. This is because either model is
trained to detect certain features from each image piece and
not necessarily features that describe the similarity between

different pieces from the same image such as border sim-
ilarity and relative feature positions. Doing this however,
in the scope of this class would not have been feasible due
to the large amounts of training data and time that would
require to see appreciable results.

5.5. Saliency Maps

In order to understand how our model was interpreting
the images, we created saliency maps of the original im-
age using base code from the 2017 CS231n Assignment 3
problem.

Figure 8: Grid of Saliency Maps on Trained Jigsaw Solver.

The saliency map shows how the saliency of each image
piece changes as the model steps through time (down the
grid) in determining the next index to assign to a position.
Specifically, the first row after the image pieces shows the
most important positions of each image used by the model
in determining which index to assign next. We had hoped
that our model would strictly focus on the contents of the
image to make predictions. The maps however show that
the model is focusing on both aspects of the image as well
as the border.

5.6. Unsupervised Pre-training

Having achieved reasonable performance on solving
the Jigsaw puzzle task, we sought to investigate whether
our network had learned unsupervised representations that
could be useful for solving the classification task on the Cal-
tech 256 Dataset [8]. Taking inspiration from Noroozi and
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Favoro [18], we built the two Neural Networks shown in
Figure 9.

Figure 9: Neural Networks for image classification on Cal-
tech 256 Dataset

The first network has a Fully Connected Network -
(FC Jigsaw) that is transfered from our 2x2 Jigsaw Puz-
zle Solver to this new task. On top of this is another Fully
connected layer to output the class log-likelihoods. This
fully connected is randomly initialized at the start of train-
ing. The second network has a single, randomly initialized
MLP that transforms VGG [21] output features into class
log-likelihoods.

Figure 10

In training both Networks, we chose 40 classes out of
the 256 possible classes in order to make the problem more
tractable. Figure 10 shows the validation curve when both
Networks were trained on 2560 images and validated on

1024 images. From this figure, we see that the Network
that was augmented with FC Jigsaw layer starts training in
an already good position, with the validation loss for the
second network only beginning to fall noticeably after 80 it-
erations. This supports our assertion that solving the Jigsaw
Puzzle Problem allows us to learn semantically useful rep-
resentations that can be transfered to other tasks like image
classification. We are not immediately certain why the val-
idation curve for the augmented network is much more un-
stable than that which was trained from scratch. We think it
might have to do with the network having to adjust between
the scales introduced by FC Jigsaw and those of the actual
classification problem. Smoothening out the curve would
thus require a more involved search through the space of
possible of initializations of top-most Fully Connected of
the network.

6. Conclusion and Future Work
In conclusion, we have seen our best model is able to

achieve 77% accuracy on the 2×2 puzzles using Resnet 50
as a feature extractor for the Pointer Network. We also
presented some reasons explaining the sharp drop in direct
and training accuracies as we increased the puzzle piece
sizes. We argued that unlike previous problems tackled
with Pointer Networks, this Jigsaw problem deals with em-
beddings in very high dimensions. Finally, we showed that
our Jigsaw solver learned certain spatial properties inherent
to the dataset. We demonstrated this by improving results
on the classification problem by transferring the trained
FC Jigsaw layer unto that task.

Two possible extensions to this project are adding Re-
inforcement Learning [24] and Set2Seq [25] components.
Reinforcement Learning allows us to use edge compatibil-
ity as a reward function. This edge compatibility function is
similar to the Dissimilarity score defined in [20]. We could
then train the network via policy gradient, effectively re-
moving the need for labels. We expect that this will boost
the performance of our model as it would better train it to
prioritize edge similarities.

Additionally, Set2Seq allows us to disregard the order of
our input and thus remove the probabilistic effect of input
order on our output. [25] showed that the order of the input
to Seq2Seq models has a considerable effect on the perfor-
mance of the model and removing this constraints will most
likely improve the performance of the model.
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