
3D Model-Based Data Augmentation for Hand Gesture Recognition

Ben Limonchik
Stanford University

benlimon@stanford.edu

Guy Amdur
Stanford University
gamdur@stanford.edu

Abstract

This project focuses on classifying hand gestures and
improving the testing accuracy using virtual 3D models
to augment the original limited dataset. An existing work
done on this classification problem and dataset uses a con-
strained generative model to predict hand gestures. The
goal of this project was to explore how generating new vir-
tual data from 3D models can augment the original dataset
to improve CNN models’ performances. We experimented
with various custom CNN architectures as well as pre-
trained models such as VGG-16 and Inception-ResNet-v2
in order to optimize our classification. We used learning
visualizations techniques in order to inform how we gener-
ated new virtual 3D data. By using the original real train-
ing dataset and the new virtual 3D training dataset we were
able to outperform the original work done on this problem,
reaching over 96% testing classification accuracy.

1. Introduction
Hand Gesture recognition has a wide variety of applica-

tions. Sign language is the primary way more than 70 mil-
lion deaf people communicate with non-deaf people. Being
able to automatically translate hand gesture to text can fa-
cilitate deaf to non-deaf communication. In this project we
are investigating the problem of identifying six hand ges-
tures representing letters and numbers in the sign language.

Furthermore, as Virtual Reality is increasingly gaining
popularity, the ability to carefully recognize what hand ges-
ture the user is using is crucial to ensure a reasonable and
smooth user experience. Hand interaction is a main compo-
nent in the VR/AR industry and hand tracking is essential
for this kind of virtual interaction.

To tackle this problem our neural networks take in a set
of hand images with a variety of backgrounds and outputs
the scientific name of the hand gesture. Since our dataset
included only 4872 training images, we attempted to gen-
erate virtual data from realistic 3D hand models using the
Unity game engine in order to outperform networks trained
on real data only. Since data collection is often an expen-

sive and very time consuming process in deep learning stud-
ies, we attempted to test whether generating fake images
on Unity in a quick and relatively cheap manner could be
used to outperform networks that rely only on real images.
Please note that the testing set was kept the same (i.e. only
real images) to ensure that any accuracy improvements are
consistent with real life examples.

2. Related Work
Interesting work has been done to solve the hand gesture

recognition problem as documented in references [2], [3]
and [17].

One paper by Sebastien Marcel [7] uses a neural net-
work approach to classify hand gestures. Marcel first cre-
ates the dataset by segmenting the hands from a full-body
images using a space discretisation based on face location
and body anthropometry. The body-face space is built using
the anthropometric body model expressed as a function of
the total height itself calculated from the face height.

Next, Marcel uses a neural network model which had al-
ready been applied to face detection: the constrained gener-
ative model (Figure 1). The constrained generative learning
tries to fit the probability distribution of the set of hands us-
ing a non-linear compression neural network and non-hand
examples. Each hand example is reconstructed as itself and
each non-hand example is constrained to be reconstructed
as the mean neighborhood of the nearest hand example.
Then, the classification is done by measuring the distance
between the examples and the set of hands.

Figure 1: Constrained generative model

Most of the hand gesture database was used for training

1



and the remainder was used for testing. Although the im-
ages with complex backgrounds are more difficult to learn,
the CGM achieves a good recognition rate and a small false
alarm rate (Table 1 and 2 in Figure 2). Our goal was to
achieve better results on the same dataset used in Marcel’s
paper using more advanced CNN architectures.

Figure 2: Accuracies per model for the Marcel experiment

Other works we reviewed in preparation of this paper in-
clude NVIDIA’s Hand Gesture Recognition with 3D Convo-
lutional Neural Networks [8], Althoff’s Robust multimodal
hand-and head gesture recognition [1] and E. Ohn-Bar’s
[11]. These researches informed our approach to customiz-
ing CNN networks however they used much larger datasets
of which not all of them were public and they were specific
to car drivers and thus were irrelevant to our data augmen-
tation problem.

Finally, in preparation of this paper we have either re-
ferred to or skimmed the following relevant works: [4], [5],
[6], [13], [10], [9], [20], [12] [15] [19]

3. Methods
3.1. Customized CNN Architectures

After conducting a literature review, we came up with a
few CNN architectures that we wanted to test. These ar-
chitectures differ in the type and number of layers chained
together. We use several combinations of convolutional,
ReLU, batch-normalization and fully connected layers.

Using repeated convolutional layers with a small fil-
ter size allows us to increase the effective receptive field
for each neuron whilst keeping the computational ex-
pense manageable. The ReLU activations introduce non-
linearities and offer sparse activation and efficient gradient
back-propagation. The batch-normalization forces the ac-

tivations throughout a network to take on a unit gaussian
distribution at the beginning of the training. The fully con-
nected layer, usually at the end of the network, introduces
additional parameters and also allows us to reshape the out-
put of the convolutional layers into the desired number of
classes. Furthermore, in every few convolutional layers we
added 2-by-2 maxpooling layers in order to reduce the di-
mensionality of the following layers and especially reduce
the number of parameters of the last few fully connected
layers.

Finally, we used a softmax loss also sometimes referred
to as negative log-likelihood loss. The softmax loss (Figure
3) uses the raw scores of the input image in order to measure
the probability of the image being classified as one of the six
possible hand gestures.

Figure 3: Softmax loss

3.2. VGG-16 Network

VGG is a relatively new 16-layer CNN architecture de-
veloped at the University of Oxford in 2014 [14]. During
training, the input to the network is a fixed-size RGB im-
age. The only preprocessing done is subtracting the mean
RGB value, computed on the training set, from each pixel.
The image is passed through a stack of convolutional lay-
ers, where the network uses filters with a very small re-
ceptive field of 3x3 (which is the smallest size to capture
the notion of left/right, up/down, center). The convolution
stride is fixed to 1 pixel; the spatial padding of the con-
volutional layer input is such that the spatial resolution is
preserved after convolution, i.e. the padding is 1 pixel for
3x3 convolutional layers. Spatial pooling is carried out by
five max-pooling layers, which follow some of the convolu-
tional layers (not all the convolutional layers are followed
by max-pooling). Max-pooling is performed over a 2x2
pixel window, with stride 2.

A stack of convolutional layers (which has a different
depth in different architectures) is followed by three fully-
connected (FC) layers: the first two have 4096 channels
each, the third performs 1000-way ILSVRC classification
and thus contains 1000 channels (one for each class). The fi-
nal layer is the soft-max layer. The configuration of the fully
connected layers is the same in all networks. All hidden lay-
ers are equipped with the rectification (ReLU (Krizhevsky
et al., 2012)) non-linearity. See Figure 4 for a VGG-16 net-
work diagram.

2



Figure 4: VGG-16 Network Diagram

3.3. Inception-ResNet-v2 Network

The Inception-ResNet-v2 network is a CNN network ar-
chitecture developed at Google in 2016 [16]. The network
combines two of most recent ideas: Residual connections
introduced by He et al. and the latest revised version of
the Inception architecture suggested by Google. It is ar-
gued that residual connections are of inherent importance
for training very deep architectures. Since Inception net-
works tend to be very deep, it is natural to replace the filter
concatenation stage of the Inception architecture with resid-
ual connections.

The residual version of the Inception networks uses
cheaper Inception blocks than the original Inception. Each
Inception block is followed by filter-expansion layer (1x1
convolution without activation) which is used for scaling
up the dimensionality of the filter bank before the addi-
tion to match the depth of the input. Another small tech-
nical difference between the residual and non-residual In-
ception variants is that the Inception-ResNet uses batch-
normalization only on top of the traditional layers, but not
on top of the summations. Finally, the Inception-ResNet-
v2 network scales down the residuals before adding them to
the previous layer activation to stabilize the training.

4. Datasets

4.1. Marcel Dataset

The hand gesture dataset we used from Marcel’s paper
is composed of six different hand gestures called: a, b, c,
point, five, and v (see image samples below). The dataset
was collected from ten different people, eight of which were
used for training data and the other two are used for testing
data. All images are of size 77x66 pixels. The testing set
is further broken down into two groups: ’uniform’ images
and ’complex’ images. In the ’uniform’ testing images the

(a) Network Diagram

(b) Stem Layer

Figure 5: Inception-ResNet-v2 Architecture

Figure 6: Inception-ResNet-A layer

Figure 7: Inception-ResNet-B layer

Figure 8: Inception-ResNet-C layer

image of the hand gesture is taken with a white background
in order to simplify the classification problem. On the other
hand, in ’complex’ testing set the images of the hand ges-
tures are taken on top of a variety of colorful backgrounds.

3



(a) Uniform background (b) Complex background

Figure 9: Testing images

The complex test set is much more difficult to classify
since the neural network needs to learn the pattern of the
hand itself despite the complexity of the colorful back-
ground. As can be seen in table 1, there is an unequal
amount of sample images from each category:

gesture/data-
set

Training Testing
(uniform)

Testing
(Complex)

A 1329 58 39
B 487 61 41
C 572 65 47
Five 654 76 58
Point 1395 65 54
V 435 57 38
Total 4872 382 277

Table 1: Number of data points of each Gesture

A training dataset of 4872 images is clearly not enough
for this type of deep learning task. Therefore we attempted
to generate additional images using artificial methods as
discussed below. Note that for as our validation set we used
300 randomly samples images from the training dataset.

4.2. 3D Model-Based Dataset

Since data collection is an expensive part of deep learn-
ing, we had decided to take another approach for additional
data collection. By generating additional data from 3D rep-
resentations we got a cheap way of collecting additional,
albeit virtual data. There were a few key conditions that the
generated images had to fulfill.

• Be faster and cheaper to generate than actual photos.

• Look as close to the actual photos as possible.

• The photos must vary in lighting conditions, hand
pose, skin color, finger placement etc.

4.2.1 Rendering with Unity3D

Unity3D is a game engine capable of creating realistic 3D
graphics in realtime. Compared to non-realtime 3D ren-
dering software such as 3Ds Max or Blender it produces
less realistic imagery. However, this was not an issue since
the output images would have a resolution of 76x66, which
means that quality improvements of the non-realtime ren-
derer would be barely visible anyway. Therefore, a realtime
renderer is a better choice in this case because of its im-
mense rendering speed compared to the alternatives.

Figure 10: The Unity editor window

4.2.2 Realistic Scene Setup

The base scene in Unity was set up to resemble the general
layout of the real dataset as close as possible. The scene
consisted of the hand model in the center and a plane cov-
ering the entire field of view at the back. The background
plane had an actual photograph as a texture to improve re-
alism. A single directional light source resembling the sun
or an interior ceiling light was placed pointing down toward
the hand in the scene.

The hand model was chosen for its realistic mesh and
textures downloaded from Blend Swap [18]. Also, the
model was rigged, meaning that the actual mesh can be con-
trolled indirectly by manipulating a skeleton structure and
its joints instead of the vertices of the mesh.

The hand model was posed to line up with the six differ-
ent gesture classes already present in the Marcel dataset.

4.2.3 Varying Photo Conditions

For each new virtual image, a number of parameters were
manipulated in the scene.

• The joints in the hand were randomized within a small
range of angles, making the hand pose look slightly
different for each image.

• The placement of the hand (as well as its rotation)
within the image frame was randomized, increasing
the variance of the dataset and hopefully improving the
CNN’s robustness to hand placement.

4



• The background image was randomly chosen from
a set of interior photographs with various furniture,
lighting conditions and color.

• The intensity and angle of the sunlight was random-
ized, increasing variance of lighting conditions within
the virtual dataset. Note: light was the variable we
played most with when generating virtual training
data. We did so as a result of our findings using
Saliency maps (see more explanation in section 5.1.1).

(a) Gesture A (b) Gesture B

Figure 11: Virtual images generated using 3D software

5. Experiment

5.1. Building customized architectures

In order to classify the test hand gestures we began by ex-
perimenting with a variety of custom neural network archi-
tectures in order to find an optimal network to fit our data.
Table 2 summarizes the different architectures we tested:

Architectures Average testing accuracy
[FC]-[FC]-[Softmax Loss] 18.2%
[Conv-Relu]-[FC]×2-
[Softmax Loss]

37.9%

[Conv-Relu]×2-[FC]×3-
[Softmax Loss]

52.3%

[Conv-Relu]×3-[FC]×3-
[Softmax Loss]

41.2%

[Conv-Relu]×4-[FC]×1-
[Softmax Loss]

39.2%

[Conv-Relu-BN-pool]×2-
[FC]×1-[Softmax Loss]

56.9%

[Conv-Relu-BN-dropout-
pool]×2-[FC]×1-
[Softmax Loss]

46.0%

Table 2: Average testing accuracy per model

Given the small real dataset we have, we expected that
networks with less fully connected layers and more convo-
lutional layers would perform better on our classification
problem. This expectation was confirmed by the first few
models we trained which had multiple fully connected lay-
ers. Therefore, in later versions we tried to use more convo-
lutional layers and smaller fully connected layers. We fur-
ther introduced pooling layers to our models in order to de-
crease the dimensionality of the last fully connected layers
and thus reduce the overall number of parameters in our net-
work. Nevertheless, we observed that our testing accuracy
didn’t increase as we added more and more convolutional
layers. We tested networks with one to four convolutional
layers and found that the testing accuracy drops below two
and above two convolutional layers. Therefore, moving for-
ward we developed our next networks with two convolu-
tional layers.

5.1.1 Data Visualization

In order to better understand what our network learned we
visualized the weights of the first convolutional layer. Most
of the visualization were similar to those on figure 12 which
do indicate that some body-colored blobs are learned but
they were not very informative beyond that.

Figure 12: Weights Visualization

On the other hand, we used saliency maps in order to
find the most important regions in our training images for
the classification problem. As seen by figure 13 we found
out as we expected that the region of the hand in the im-
age was very important for the classification task. Inter-
estingly we noticed that light was also extremely important
(i.e. intense red regions) to the classification problem. This
is the reason why we decided to generate virtual 3D training
datasets where we moved around the location of the light
source while keeping the hand still. We did so in order to
be able to feed the network images of the same hand ges-
ture with shadows in different directions. We expected that
this change will make our network more robust to light an-

5



gle changes. This hypothesis was confirmed as seen by the
accuracy improvements.

Figure 13: Raw images fed to the network and their saliency
maps

This led to the idea of generating many virtual images us-
ing Unity where the hand gesture would remain still but the
position of the light source will rotate around. We guessed
correctly as shown in Section 6, that by using fake virtual
data with a variety of light sources orientations, we were
able to fool a network to perform even better on the real
testing dataset.

5.1.2 Hyper Parameter Tuning

The best custom network we built was a two layer convolu-
tional network with the following architecture:

[Conv−Relu−BN−pool]×2−[FC]×1−[SoftmaxLoss]

Once we stopped exploring new custom networks we spent
considerable time hyper tuning the parameters of our model.
Initially we tried different optimizers including RMSProp
and Momentum but we finally settled on using Adam op-
timizer due to its multi-dimension rate adaptability as well
its ability to build momentum in gradient descent. As for
our minibatch size we experimented with batch sizes be-
tween 8 and 124 input images. Small batch size led to a
lot of fluctuation in our loss versus iteration plots. How-
ever, while larger batches result in smaller spikes, due to the
small dataset we have the epoch is completed quite quickly
making it hard to observe the loss trend over the epoch. Fi-
nally, we settled on using 32 images as our batch size to
minimize spikes on our loss plot but still maintain a read-
able curve to inform our learning. Such loss versus iteration
plots can be seen in figure 14.

Finally, given our chosen minibatch size, optimizer and
architecture, we grid searched (see figure 15) for the optimal
learning rate and the optimal regularization factor (note: we
used L2 regularization). The optimal combination we found
as seen by figure 15 was: Learning rate: 0.0009, Regular-
ization: 0.000802. Despite the various customization we
made to the network we were unable to pass the 60% testing

(a) Uniform background (b) Complex background

Figure 14: Loss vs. Iteration Plots

threshold and thus we chose to experiment with customiz-
ing pretrained networks such as VGG-16 and Inception-
ResNet.

Figure 15: The Unity editor window

5.2. VGG customization

We downloaded an existing VGG-16 model from Ten-
sorFlow models library to transfer learning to a new VGG
model. The VGG-16 model’s weights have already been
trained on ImageNet, achieving accuracy of around 92% in
the ImageNet Large Scale Visual Recognition Challenge.

We then replaced the last output layer with a custom fully
connected layer of size [1000x6] to output the desired num-
ber of classes in our dataset. We fine-tuned the network’s
hyper-parameters in the following way:

• Batch size: 32

• Learning rate: 1e-3

• Dropout probability: 0.5

• Weight decay: 5e-4

After setting up these parameters, we trained only the
last fully-connected output layer on 10 epochs. Next, we
re-trained the full model on 10 more epochs, with the fol-
lowing hyper-parameters:

• Batch size: 32

• Learning rate: 1e-5

• Dropout probability: 0.5

• Weight decay: 5e-4

We trained the customized model on 3 training datasets
composed of: 1) original data, 2) virtual data that we gen-
erated from 3D models, and of the same size of the original
data, 3) a combined dataset containing both original and vir-
tual data.

6



5.3. Inception-resnet-v2 customization

In a similar fashion we downloaded an existing
Inception-resnet-v2 model from TensorFlow’s models li-
brary to transfer learning to a new Inception-resnet-v2
model. The Inception-resnet-v2 model’s weights have al-
ready been trained on ImageNet, achieving accuracy of
around 95% in the ImageNet Large Scale Visual Recogni-
tion Challenge.

We then replaced the last output layer with a custom
fully connected layer of size [2048 x 6] to output the de-
sired number of classes in our dataset. We fine-tuned the
network’s hyper-parameters in the following way:

• Number of epochs = 10

• Batch size: 8

• Initial learning rate: 2e-4

• Learning rate decay = 0.7

• Number of epochs before decay = 2

After setting up these parameters, we trained the entire
customized model on 3 training datasets composed of: 1)
original data, 2) virtual data that we generated from 3D
models, and of the same size of the original data, 3) a com-
bined dataset containing both original and virtual data.

5.4. Results

We evaluated each of the three trained models per
method on the same test datasets composed of hand gestures
images with uniform and complex backgrounds separately
as well as both sets combined. (see Figure 16).

5.4.1 VGG-16

We can see a large gap in accuracies (around 30%) for the
VGG model trained on the real original data. This gap sug-
gests that the original dataset was not generalized enough
for capturing different image background settings. This
model clearly overfits the uniform data.

The VGG model trained on the virtual data performed
the worst with lowest accuracies on both uniform and com-
plex test sets.

The VGG model trained on both real and virtual data (la-
beled as combined in the table) achieved lower accuracy on
the uniform test set than the first model (trained on real data)
did. This model, however, surpassed the accuracy of the
first model by 14% on the complex set, closing the uniform-
complex accuracy gap to 2%. This interesting result sug-
gests that the new virtual dataset provides some generaliza-
tion of the data, which leads to a model that better classifies
complex images.

5.4.2 Inception-ResNet-v2

The Inception-ResNet-v2 models performed significantly
better than the VGG models did on every train-test sets
combination. Here we can see an interesting result that
the models trained on virtual datasets achieved accuracies
higher than the first model (trained on real dataset) by more
than 10%. In fact, the highest accuracies for both uniform
and complex test sets outperformed those in Marcel’s paper,
surpassing 96%.

In this case, we see a clear advantage for adding virtual
data to our training dataset, and even completely replacing
it.

Figure 16: Accuracies per model

As we trained the Inception-ResNet-v2 models we mon-
itored the confusion matrix to ensure that the model was not
over-fitting for particular gestures but that the accuracy was
relatively uniform across classes. Table 3 shows the con-
fusion matrix for the optimal Inception-ResNet-v2 model
trained with combined data on complex testing dataset.

We can see from the table that our models misclassified
the gesture A (i.e. a fist) as a Point (i.e. one finger pointing).
This behavior can be explained by particular backgrounds
that have vertical objects behind the hand, which confuse
the model to interpret them as fingers. An example for such
misclassification is shown in Figure 17.

7



Truth/
Label

A B C point five V

A 35 0 1 3 0 0
B 0 41 0 0 0 0
C 2 0 44 1 0 0
point 0 0 0 52 0 2
five 0 0 0 0 58 0
V 0 0 0 2 0 36

Table 3: Confusion matrix for combined model on complex
dataset

Figure 17: Misclassification

6. Conclusion
As we can see from the results, 3D model-based data can

significantly augment scarce datasets to improve models’
accuracies. Virtual datasets generation can be controlled
to compensate for ungeneralized data by applying various
linear transformations, backgrounds and lighting.

Another conclusion that can be drawn from the data vi-
sualization section is that saliency maps can point at im-
portant network behaviors and potential drawbacks in the
dataset. Such insights from exploring a network’s saliency
map can be then used to generate customized virtual data to
better fit the network’s behavior and help it generalize for
the unseen test dataset. Overall, due to the use of virtual
data, customization and fine-tuning pretrained models such
as Inception-ResNet, we were able to surpass the original
accuracies of 93.0% for uniform backgrounds and 84.4%
for complex backgrounds and achieve instead 96.62% and
96.24% respectively.

7. Future Work
There are several experiments that can be done to far-

ther test the advantages of virtual data augmentation. One
experiment would be generating a larger amount of virtual
data to see if it can improve accuracy even more.

Furthermore, given a larger dataset it would be interest-

ing to test whether our networks can learn to distinguish
between dozens of different gestures instead of only six ges-
tures.

Finally, we would like to test virtual data augmentation
on other datasets and classification tasks to see if this tech-
nique can improve other models as well.

References
[1] Frank Althoff, Rudi Lindl, Leonhard Walchshausl, and

S Hoch. Robust multimodal hand-and head gesture recog-
nition for controlling automotive infotainment systems. VDI
BERICHTE, 1919:187, 2005.

[2] Lucas Bonansea. 3d hand gesture recognition using a zcam
and an svm-smo classifier. 2009.

[3] Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann.
Robust 3d hand pose estimation in single depth images: from
single-view cnn to multi-view cnns. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3593–3601, 2016.

[4] Ho-Joon Kim, Joseph S Lee, and Jin-Hui Park. Dynamic
hand gesture recognition using a cnn model with 3d recep-
tive fields. In Neural Networks and Signal Processing, 2008
International Conference on, pages 14–19. IEEE, 2008.

[5] Hsien-I Lin, Ming-Hsiang Hsu, and Wei-Kai Chen. Human
hand gesture recognition using a convolution neural network.
In Automation Science and Engineering (CASE), 2014 IEEE
International Conference on, pages 1038–1043. IEEE, 2014.

[6] Cristina Manresa, Javier Varona, Ramon Mas, and Fran-
cisco J Perales. Hand tracking and gesture recognition for
human-computer interaction. ELCVIA Electronic Letters on
Computer Vision and Image Analysis, 5(3):96–104, 2005.

[7] Sbastien Marcel. Hand posture recognition in a body-face
centered space. http://www.idiap.ch/resource/
gestures/papers/marcel-chi-99.pdf, May
1999.

[8] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Jan
Kautz. Hand gesture recognition with 3d convolutional neu-
ral networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, pages 1–7,
2015.

[9] Jawad Nagi, Frederick Ducatelle, Gianni A Di Caro, Dan
Cireşan, Ueli Meier, Alessandro Giusti, Farrukh Nagi,
Jürgen Schmidhuber, and Luca Maria Gambardella. Max-
pooling convolutional neural networks for vision-based hand
gesture recognition. In Signal and Image Processing Appli-
cations (ICSIPA), 2011 IEEE International Conference on,
pages 342–347. IEEE, 2011.

[10] Steven J Nowlan and John C Platt. A convolutional neural
network hand tracker. Advances in Neural Information Pro-
cessing Systems, pages 901–908, 1995.

[11] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Hand gesture
recognition in real time for automotive interfaces: A multi-
modal vision-based approach and evaluations. IEEE trans-
actions on intelligent transportation systems, 15(6):2368–
2377, 2014.

8

http://www.idiap.ch/resource/gestures/papers/marcel-chi-99.pdf
http://www.idiap.ch/resource/gestures/papers/marcel-chi-99.pdf


[12] Lionel Pigou, Sander Dieleman, Pieter-Jan Kindermans, and
Benjamin Schrauwen. Sign language recognition using con-
volutional neural networks. In Workshop at the European
Conference on Computer Vision, pages 572–578. Springer,
2014.

[13] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Tay-
lor, Jamie Shotton, David Kim, Christoph Rhemann, Ido Le-
ichter, Alon Vinnikov, Yichen Wei, et al. Accurate, robust,
and flexible real-time hand tracking. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Com-
puting Systems, pages 3633–3642. ACM, 2015.

[14] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[15] Ekaterini Stergiopoulou and Nikos Papamarkos. Hand ges-
ture recognition using a neural network shape fitting tech-
nique. Engineering Applications of Artificial Intelligence,
22(8):1141–1158, 2009.

[16] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alex Alemi. Inception-v4, inception-resnet and the im-
pact of residual connections on learning. arXiv preprint
arXiv:1602.07261, 2016.

[17] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken
Perlin. Real-time continuous pose recovery of human hands
using convolutional networks. ACM Transactions on Graph-
ics (ToG), 33(5):169, 2014.

[18] Thomas Walentin. Simple hand rig — blend swap. https:
//www.blendswap.com/blends/view/75824,
2014. (Accessed on 06/04/2017).

[19] Deyou Xu. A neural network approach for hand gesture
recognition in virtual reality driving training system of spg.
In Pattern Recognition, 2006. ICPR 2006. 18th International
Conference on, volume 3, pages 519–522. IEEE, 2006.

[20] Xiaoming Yin and Ming Xie. Hand gesture segmentation,
recognition and application. In Computational Intelligence
in Robotics and Automation, 2001. Proceedings 2001 IEEE
International Symposium on, pages 438–443. IEEE, 2001.

9

https://www.blendswap.com/blends/view/75824
https://www.blendswap.com/blends/view/75824

