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Abstract

Image completion, also known as image inpainting, is
an active computer vision research problem that aims to
automatically fill in a missing portion of an image in a
content-aware way. Various approaches have been engi-
neered by academia dedicated to this problem, modern ones
even applying deep convolutional neural networks to have a
smoother and more realistic output images. In this project,
we aim to compare and evaluate two most widely accepted
image inpainting algorithms: Exemplar-Based Inpainting
(EBI)[1] and Deep Convolutional Generative Adversarial
Nets (DCGAN)[5] based image inpainting algorithm.

1. Introduction

Image completion, also known as image inpainting, is an
active computer vision research problem that aims to auto-
matically fill in a missing portion of an image in a content-
aware way. By content-aware, it means that an algorithm
should consider the neighbor pixel information of the miss-
ing portion of the image it is completing when it produces
the final completed output. State of the art such algorithms
are often realized with convolutional neural networks, and
in this paper, we aim to reproduce one of the novel research
results of such neural network structures, Deep Convolu-
tional GAN, apply it to construct an image inpainting algo-
rithm, and evaluate our reproduced algorithm qualitatively
by comparing it with Exemplar-Based Inpainting, and quan-
titatively by evaluating its output completed images’ L1 dis-
tances to the original images.

The input to our algorithms is two datasets of human face
images. For the GAN based algorithm, we use the dataset
to train a GAN model, producing a discriminator D and a
generator G. We then try to find the optimal input noise z
that generates the best-fitting image for our image comple-
tion purpose. Finally, we use corresponding area of G(z) to
fill in missing region(s) of the image.

There are two folds for our algorithms evaluation: to

compare EBI with DCGAN based approaches, we simply
compare the outputs of the algorithms by letting objective
audience choose the better image of the output pair gen-
erated. To evaluate the DCGAN based approach by itself,
we try to formalize it by comparing its output images with
respect to the original images, computing average L1 dis-
tances between its outputs and originals.

The rest of this paper is structured as follows: section 2
discusses related work of image completion problem; sec-
tion 3 elaborates on the image data set we chose to use for
this project; section 4 and 5 go deep on the details of the al-
gorithms we chose to evaluate and actual evaluation of their
performances; section 6 addresses future works and section
7 concludes our project work.

2. Related Work
For our related work, we should first note that since our

work spans from traditional image processing techniques1,
to modern application of convolutional neural networks in
image completion context, we introduce our related work in
a similar manner: we first introduce some related work in
traditional image processing area, and then move on to in-
troduce more related work on deep learning in image com-
pletion context.

2.1. Traditional Image Processing Techniques

The work by Bertalmio et al.[2] first formalizes the im-
age inpainting problem and summarizes its application pur-
poses. Followed by them were numerous image process-
ing techniques for image inpainting problem. Criminisi et
al.[1] introduced a milestone algorithm that formed the ba-
sis of the Exemplar-Based Inpainting algorithm used for this
project, and we will elaborate on the algorithm in section
4. Sun et al.[7] proposed an image completion algorithm
by emphasizing the underlying structures in the images by
looking at the entire image rather than nearby pixels around
filling regions. Their algorithm also differs from the algo-

1By traditional, we mean that the algorithm does not have any machine
learning component.
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rithm by Criminisi et al. in ways they define and compute
the structure of images: they require users to manually input
important structure information, and the algorithm works
by computing the pixel structures following the input struc-
tures from users. Later Telea[21] proposed an image in-
painting algorithm that runs faster but maintains competi-
tive quality of output images to the work by Criminisi et al.
This is achieved by essentially looking at an even smaller
region of neighboring pixels compared to EBI. All the pre-
vious works compute the pixels in masked region by con-
sidering each pixel individually. However, rather than com-
puting the next pixel in the masked region following similar
manner, Avidan et al.[8] engineered an image inpainting al-
gorithm which uses a technique called seam carving. Seam
carving is a technique that extracts image content informa-
tion from an optimal 8-connected path of pixels from top to
bottom, or left to right, and Yan et al.[9] later engineered
an algorithm which uses seam carving in a more efficient
way: only considering seams in the pixel regions outside
the target filling regions.

All of the above image inpainting algorithms are based
on traditional image processing techniques with no machine
learning involved, and we chose to focus on the algorithm
by Criminisi et al. since it was the first milestone research
work that performed reasonably well with various input im-
ages.

2.2. Image Completion with Deep Learning

Our project builds upon GAN network concept first in-
troduced by Goodfellow et al.[10], which defines a genera-
tor neural network and discriminator neural network. Gen-
erator transforms random input noise, noted as z, into a fake
image that is aimed to look like a random one from training
set, and then discriminator takes in this generated image,
and tries to distinguish if this image is a generated fake im-
age or a real image from training set. The original GAN
structure was defined with fully connected layers, and the
work by Radford et al.[5] extended this GAN concept into
DCGAN by replacing fully connected layers with convo-
lutional layers, making generator and discriminator convo-
lutional neural networks instead. However, being notori-
ously finicky with hyperparameters, previous networks en-
gineered such as normal GAN and DCGAN requires huge
commitment during its training process. State of the art
networks such as WGAN by Arjovsky et al.[6] improves
the stability of the training process by avoiding problems
such as mode collapse, making hyperparameter searches on
GANs easier and more stable than before.

Above related works are different GAN structures pro-
posed that formed the basis of our research project, and
the followings discuss more on the intersection between
deep learning and image completion algorithms. Work by
Fawzi et al.[11] proposes an approach to transform a pre-

trained neural network on images into a tool to patch large
corrupted regions of pixels. Schuler et al.[12] proposes a
method to learn direct mapping from masked regions to
their completed counterparts. Last but not least, Yeh et
al.[13] proposed a method to use GANs to complete masked
regions of images, and their method of image completion is
elaborated in our method section as we formed our GAN
based approach image completion algorithm following this
piece of research work.

The work by Schuler et al. requires less test time for
performing image completion task, and we first considered
forming our project based on this piece of research work.
However, despite its fast runtime, its algorithm requires
prior knowledge of the masking information such as mask
size and mask location before the training phase, which is
not very scalable to be used in comparison with traditional
image processing techniques. However, the work by Yeh
et al. perfectly solves this problem by only considering
the masking information in the test time, thus making the
trained networks more generalizable as traditional image
processing techniques are.

2.3. Evaluations of Different Image Inpainting Al-
gorithms

Patel et al.[14] previously have published a work that re-
views and evaluates different image completion algorithms,
and their reviewed algorithms are all traditional image pro-
cessing techniques that require no machine learning in-
volved. Sangeetha et al.[15] also published a piece of work
reviewing different image completion algorithms, but this
work only looks at those algorithms that used exemplar-
based inpainting. Tiefenbacher et al.[16] presented a rel-
atively new piece of work that evaluates state-of-the-art im-
age completion algorithms in 2015, and gives a conclusion
that some of the formal metrics defined for evaluating im-
age quality are not suited for evaluating quality of image
completion algorithms.

Our project work follows a similar suit of the above
pieces of works, but we choose to do an evaluation between
EBI and DCGAN based approach to represent a compar-
ison between traditional image processing techniques and
modern deep learning based approaches.

3. Datasets
For our DCGAN based image inpainting algorithm, we

used CelebA[17] dataset and LFW[18] dataset which in to-
tal comprises roughly 215,599 images of human faces col-
lected from the web. The CelebA dataset is mainly used
for training, which contains in total of 202,599 human face
images, and we used LFW dataset for validation and test-
ing, which contains roughly 13,000 images. Although these
two datasets are completely independent, after the follow-
ing preprocessing steps, we are able to essentially use them
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(a) Sample images from CelebA

(b) Sample images from LFW

Figure 1: Sample images of our datasets

as an aggregated one big dataset.
Before we feed our raw images of human faces into our

model for training, we first preprocess it using openface
library[19] to (1): crop the images down to 64 pixels * 64
pixels in size, and (2): keep only the human face part and
remove all background pixels. From then we further prepro-
cess the input images by dividing all pixel values with 127.5
(a convenient mean value chosen for pixel values ranging
from 0 to 255), and then subtract by one. This above step is
introduced to map all pixel values from [0, 255] to [-1, 1],
enhancing the stability of DCGAN training process.

For EBI algorithm, since there is no machine learning
involved, there was no specific dataset used for engineering
the algorithm. We used several images we had in hand and
some found on the web for the algorithm’s sample outputs.
However, for comparison purposes, we also included output
of EBI algorithm on some sample images from the above
LFW dataset in section 5.

Some sample images we used from the above two
datasets and for EBI algorithm are presented in Fig. 1.

4. Methods

In this section, we discuss the methodology and imple-
mentation for the the algorithms we are evaluating. As for
EBI, we chose to use the online open source implementa-
tion of the algorithm by Li et al.[20], and for DCGAN based
image completion algorithm, we modified based on the ex-
isting MIT Licensed implementation of DCGAN based im-
age completion algorithm by Amos[22]. On top of the code
modified, we performed our original reproduction and eval-
uation of the two algorithms.

4.1. Exemplar-Based Inpainting (EBI)

As suggested by its name, exemplar-based inpainting
uses an iterative solution to generate the unknown region
based on the source region of the image. The pixel syn-
thesis of the fill-region begins at the fill-front, or the edge
between the known/unknown region, and gradually moves
inwards to complete the missing zone. The intuition of this
algorithm came from fluid dynamics and partial differen-
tial equations. The filling mechanism is derived from Dr.
Bertalmo, Bertozzi and Sapiros concept of smooth continu-
ation of information in the level-lines direction.[3] Accord-
ing to Bertalmo’s 2001 CVPR paper, the filling rule is to
extend the isophotes, or linear structures, while matching
gradient vectors at the contiguous edge of the fill-region.[4]

The EBI algorithm consists of a Laplacian-based edge
detection, followed by iterations of two major filling
steps: determining pixel filling priority, and calculating the
weighted pixel value. There are variations to the implemen-
tation of this method. While traversing along the fill-front,
the order, or priority, of the filling is critical to the output.
Microsoft researchers Criminisi et al.’s implementation fea-
tures the use of a ”confidence term”, prioritizing the filling
of pixels locating closest to the source (known) region.[1]
More specifically, this confidence term evaluates each edge
pixel with its surrounding pixels (depending on custom path
radius), and gives a ratio of pixel location in the fill versus
source region. For example, if a pixel is located on the fill-
front and has 2 out of 9 surrounding pixels located within
the source region, then it will obtain a lower fill priority than
a pixel with 5 out of 9 surrounding pixels located within the
source region. Li et al.[20] implemented an advanced ver-
sion of Criminisi et al.’s algorithm by adding a similarity
term based on Non-Local-Mean method, which measures
how similar the current pixel patch is to the rest of the re-
gions within the image. For our evaluation of the EBI algo-
rithm, the priority term is defined with both the confidence
term and the similarity term according to Li et al[20]:

Cij =
Σmn∈Ψij∩(I−Ω)Cmn

|Ψij |
(1)

Sij =‖ 1

Zi
exp−

Σmn(kmnv((Ni)mn−(Nj)mn))22
h2 ‖2 (2)

Zi = Σj exp−
‖v(Ni)−v(Ni)‖22,a

h2 (3)

For each iteration, the pixel with the highest priority en-
ters the filling stage and has its value assigned by a normal-
ized weighted sum of its surrounding source region pixels.
The pixel weight estimation with L2-norm gives emphasis
to those pixels located closer to the inpainting pixel and the
boundary normal.[20][21] Upon every pixel update, the fill-
front pixel priority is re-evaluated and the new pixel with
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highest priority proceeds to the filling stage. The algorithm
iterates until the entire fill region is complete.

4.2. DCGAN

For our DCGAN approach, the general idea is to gener-
ate an image that looks close to the target image and then
take the corresponding area to fill in the target image. First,
using a dataset of images as input, we train a DCGAN
model following the algorithm proposed in Goodfellow et
al.[10]. As show in Fig. 2, the discriminator uses four
convolution 2D layer with relu activation and finally a fully
connected linear layer. The generator, shown in Fig. 3, is
almost the exact opposite. It’s first a linear layer combined
with a reshape to transform the input noise z into appro-
priate dimensions followed by four convolution 2D trans-
pose layers with relu activation. Adam optimizer is used
with standard parameters to ensure reliable training updates.
We then have a discriminator D that discriminates between
”real” and ”fake” (from the dataset or generated) images
and a generator G that takes in a random input noise z and
generates a realistic image with respect to the dataset.

Figure 2: Discriminator architecture

Figure 3: Generator architecture

We want to obtain an input z that allows the generator to
produce a desired image to use for image completion. The
work flow of this process is captured by Fig. 4. For this op-
timization problem, we define the loss as a weighted sum of
the contextual loss and the perpetual loss of the generated

image. Contextual loss captures the intuition that if the gen-
erated image G(z) have similar values at places where the
original image is not missing, then the part of G(z) where
we use to complete the original image should fit reasonably
well. More specifically, we define mask M as a binary ma-
trix with the same size as our input image. M has value 1
at pixel locations where the image is not cropped out and
0 otherwise. We then formalize the loss as the L1 distance
between the masked original image and the masked gener-
ated image as shown in equation 1. This ensures that the
image we generate is as similar as possible to the target im-
age in unmasked parts. We have also tried to use l2 distance
between the two images but l1 distance seems to be empir-
ically better. In contrast, we define perpetual loss to ensure
our generated image is realistic. Intuitively, although our
generator is trained to produce images that look like they
come from the training dataset, there is no guarantee that
passing in a random input noise z through the generator will
get us one. Naturally, we can pass a generated image G(z)
through discriminator D and evaluate the loss as below. Af-
ter many iterations of gradient descent, we obtain a realis-
tic image that looks like our target image. In our case, we
simply hard coded 1000 iterations of gradient descent, but
we could have easily defined a converging condition just
like any other gradient descent problem. Finally we use the
corresponding area of the generated image to complete the
target image.

Lconceptual(z) = ||M ⊗ I −M ⊗G(z)||1 (4)
Lperceptual(z) = log(1−G(z)) (5)
L(z) = Lconceptual(z) + λ ∗ Lperceptual(z) (6)
ẑ = arg min

z
L(z) (7)

xreconstructed = M ⊗ I + (1−M)⊗G(z) (8)

5. Results and Evaluation
In this section, we present our evaluation results for the

above two algorithms, mainly focusing on their compared
quality of output images as well as their realism to human
audiences. The dataset we used for validation and test is
LFW dataset, and sample outputs are presented in the fol-
lowing subsections.

5.1. Objective Audience Evaluation

Originally, we planned to have an experimentation pro-
cess as depicted in Fig. 5. An experiment set is a set of
image pairs that focuses on a category of image completion
tasks. For instance, image completion is often a tool used
in object removal, and we planned to set up an experiment
set which contains original images that require some objects
to be removed. Then we let a group of people go through
the experiment set, and for each image pair, we planned to
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Figure 4: Completion process

record the better ones scored by audiences and discuss their
indications.

However, we soon realized a problem that made this ex-
periment inaccessible: for each new category of image com-
pletion task we choose, we need to find a dedicated training
dataset to train our DCGAN algorithm. This would be an
impossible amount of workload for the limited time frame
we have. Thus, for comparing between EBI and DCGAN
based algorithms, we still continued with the scoring ap-
proach, but since the results generated by EBI on human
faces are far from ideal, we had to ask the audience to com-
pare outputs of EBI and DCGAN based approach that were
completed from two different original images in order to
get competitive results. We also tried to train DCGAN on
larger scenery pictures, since those are the type of images
EBI performs better2. However, the training time it takes
for DCGAN to train on such large images were too long for
us to do an efficient and meaningful hyperparameter search.
Thus we had to devise an objective scoring system that can
address the gap in categories of original images that two
algorithm run on, which we elaborate below.

As for objectively scoring the images, we asked the audi-
ence to score based on: (1): image complexity; (2): image
realism; and (3): ”cost performance” of the images gen-
erated. The image complexity factor accounts for the al-
gorithm’s ability to perform image completion on ”harder”
images. This ”hardness” is introduced as an effort to map
different contents of original images to the same space in
image completion: if EBI is completing an image with com-
plexity score of 8, and DCGAN based approach is also com-
pleting a region with complexity score of 8, then we state
that the two algorithms are completing roughly the same

2Our experimentation result show that EBI performs the best roughly
when the input images are bigger than 300*300 with repetitive patterns

level of tasks. Image realism factor accounts for the algo-
rithm’s successfulness in terms of convincing people, since
after all the purpose of the algorithm is to generate realis-
tic completed images. ”Cost performance” factor accounts
for the time cost that audience has to pay in order to get the
completed images. In other words, the amount of time au-
dience has to wait to ”pay” for the image completion task to
be finished.

Figure 5: Example of the objective audience evaluation pro-
cess.

The sample outputs of the two algorithms are in Fig. 6,
and sample result of the comparison of the two algorithms
is summarized in table 1. To obtain scores for the compar-
ison sets, we asked 30 people with different demographic
backgrounds to ensure enough randomization in the scor-
ing process. We collected scores on 5 different comparison
sets that have different levels of our subjective complexity
ratings from us to ensure our experiment is covering a wide
range of image content difficulties. The corresponding com-
parison set to the table 1 is provided in Fig. 7. The rest of
the four comparison sets are attached in appendix section.

From the results we obtained, it was clear that EBI’s
quality of output images is heavily influenced by the pixel
information it sees in the images it is completing. The
more complex the original structure is, the worse it per-
forms since it becomes harder to draw patterns from the sur-
rounding complex image structures. Fig. 8 presents a failed
sample output by EBI on a set of human faces. From the
same line of perspective, DCGAN based approaches tend
to perform much more stable and better on quality of output
images. However, interestingly from the data points we col-
lected, despite the fact that the output images look better, it
shows that the audience do not necessarily scores more on
the cost performance factor for DCGAN based approaches
than they do on EBI (the details on the algorithm’s run-
time is elaborated in the following subsection). This shows
that the audience we have interviewed has a non-negligible
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Algorithm Image Complexity (0-10) Image Realism (0-10) Image Test Time Cost Performance (0-10)
EBI 6.0 9.3 9.3 (˜1.2 min)

DCGAN 7.6 8.2 7.2 (˜7.5 min)

Table 1: Sample result of the scores collected on scoring set 1. All scores are scored on range 0 to 10 with 10 being the most
ideal.

(a) Sample output of Exemplar-Based Inpainting. The algorithm
uses the mask fill in the masked portion with the surrounding pixel
information.

(b) Sample output of DCGAN based approach (left: original, right:
completed).

Figure 6: Sample outputs of the two image completion al-
gorithms.

preference on the runtime of the algorithm, and for any ap-
plication that uses image completion algorithm, developer
should think carefully about the trade off between output
image quality and the runtime of algorithm.

5.2. Difference between Output Images and Origi-
nal Images

Aside from the scoring evaluation we performed on our
objective audience, we also analyzed our DCGAN based
image completion algorithm’s performance by recording its
L1 distances between its output images and original images.
Since the original images are real images, we can state that
the closer our outputted images are to the original images,

the more realistic completed images it produces.
We chose to perform this task on our test set, which com-

prises 1,000 images from LFW dataset. In Fig. 9 we plot-
ted the L1 distances of a sample batch under 4000 iterations
while performing completion task, and Table 2 summarizes
our L1 distance stats on all of the 1,000 images under dif-
ferent number of training iterations.

Iters Max Min Mean Std. Pxl. Avg.
500 3837.5 966.3 1285.5 449.6 0.31

1000 3837.5 865.5 1095.7 370.8 0.27
2000 3837.5 816.1 964.6 293.3 0.24
3000 3837.5 806.25 913.2 250.3 0.22
4000 3837.5 801.49 885.7 221.9 0.21

Table 2: L1 Distance Stats on Test Set

As indicated from the above data, we can see that
our DCGAN based image completion algorithm eventually
achieves an average L1 distance of 885.7, which comes
down to an average loss per pixel of mere 0.21. This im-
plies that our DCGAN based image completion algorithm’s
outputs are very close to the original images (each generated
pixel is only differing from the original by 0.21!), and the
visual outputs (Fig. 6) can further confirm our conclusion
obtained quantitatively from above.

However, we can also see from the above figures that

Figure 7: Example of one of the comparison sets we used
(corresponding to result presented in Table 1). From left to
right: original images, masks, completed images.
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Figure 8: Sample of running EBI algorithm on human faces.

Figure 9: Average L1 distance over number of iterations

the output convergence starts around 1000 iterations sec-
onds, which takes roughly 3 4 minutes. This long test time
in fact negatively penalizes the user quality of experience
by a non-negligible amount. Results attached in Appendix
further proves this point: DCGAN based image completion
algorithm has a stable and high scores on image realism, but
it hardly has high scores on ”cost performance” factor.

6. Future Work
As discussed in evaluation section, currently our DC-

GAN based image completion algorithm is significantly
slower than EBI, or other deep learning based approaches
which directly learn the mapping from masked regions to
completed images. Thus, the runtime optimization of our
GAN based approach could be our next step for this project.
One possible solution to address this problem is to prune un-
likely outputs early. For example, if the unmasked region of
the input has a skin color of black, then we might better off
starting from input noise z that generates a human face that
has skin color of black rather than just starting randomly in
the z space. We would then also have to implement a con-
vergence criteria during optimization of z instead of hard
coding a certain number of iterations.

Additionally, our current DCGAN based approach does

not smooth out the edge of the masked region after it has
patched it with generated fake image. This leaves final com-
pleted image to appear a bit discontinuous when looked
closely. For future development, we can introduce addi-
tional image processing algorithm to smooth out the edges
so that the output images will look even more realistic than
what they are now.

Moreover, DCGAN based algorithm’s ability to com-
plete images is limited to the training dataset it has seen
before. We could have used a larger model which can po-
tentially maintain more knowledge about the training im-
ages, so that users do not have to train individual networks
for each different category of image completion problems.
However, this solution obviously does not scale well as the
categories become richer, and generalizability of neural net-
works is another area of research that is beyond the scope
of this project.

7. Conclusion

In this paper, we presented two different image inpaint-
ing algorithms, namely Exemplar-Based Inpainting and
Deep Convolutional GAN based image completion algo-
rithm, and presented our evaluations of them. Exemplar-
Based Inpainting algorithm typically runs faster, and it ap-
plies to larger types of images since it does not require any
training, but its quality of output images is also heavily de-
pendent on the surrounding pixel information it sees, and
generally fails to patch images with large masked regions or
with complex structures. On the other hand, DCGAN based
approach tend to be slower during the test time as it needs
to forward and backward propagate multiple times to search
for the best input noise z. However, its quality of output im-
ages is notably better than Exemplar-Based Inpainting, and
it can even extend the complex structures of the images in a
very realistic way to complete the masked regions.

Given its fast runtime and acceptable quality of out-
put, we think that Exemplar-Based Inpainting is suitable
for applications where users require quick responsiveness.
For example, mobile applications that automatically ”pho-
toshop” pictures taken (to remove some small corrupted
points). On the other hand, despite its requirement of huge
commitment during training process and long runtime dur-
ing testing, we think that DCGAN based approach is suit-
able for a different set of scenarios, scenarios that can tol-
erate time consuming completion process but require high
quality and accuracy, such as scene reconstruction for crimi-
nal investigation, or human body imaging (tumor detection)
for medical purposes, etc.

8. Appendices

Other four comparison sets are included here: Fig. 10,
11, 12, 13 presents the comparison sets and Table 3 presents
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the average scorings obtained from our audience.

Figure 10: Comparison set 2.

Figure 11: Comparison set 3.

Figure 12: Comparison set 4.

Figure 13: Comparison set 5.
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Set 2 Image Complexity (0-10) Image Realism (0-10) Image Test Time Cost Performance (0-10)
EBI 7.9 9.4 9.2 (˜1 min)

DCGAN 7.7 8.2 7.3 (˜7.5 min)
Set 3 – – –
EBI 5.2 9.9 9.7 (˜0.8 min)

DCGAN 6.4 8.3 7.4 (˜7.5 min)
Set 4 – – –
EBI 8.2 8.1 8.0 (˜1.1 min)

DCGAN 7.9 8.2 8.0 (˜7.5 min)
Set 5 – – –
EBI 5.3 9.0 9.2 (˜0.6 min)

DCGAN 6.4 8.8 8.0 (˜7.5 min)

Table 3: Results of comparison sets 2 - 4
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