

1

Abstract

Existing software solutions used to analyze overhead

video recording of mice movement in an Open Field test

rely on traditional computer vision-based image analysis.

While quite successful in providing basic behavioral

metrics, face significant difficulties in analyzing more

complex patterns. In addition, they require elaborate

setup and configuration to work properly. Machine-

learning and convolutional neural networks (CNN)

specifically promise to be less susceptible to these

limitations and provide fully automated workflow,

accommodating to wider margin of image resolution and

quality. This project is an attempt to detect 6 types of

events of mice behaviour in the context of an open field

test, paying particular attention to detecting rearing, or

standing on rear limbs using pre-trained generic CNN

with minimal training.

1. Introduction

Drug development requires testing of novel compounds

in animal models of human disease. The Open Field is one

of the most known primary behavioral tests. It is a useful

tool for assessing impairment in animal models of

neuromuscular disease and efficacy of therapeutic drugs

that may affect locomotion and/or muscle function. During

the test, movements of a mouse is analyzed for basic

metrics like distance traveled or interior/exterior

preference as well as more complex patterns, like

interacting with objects or standing on rear limbs (rearing).

Traditionally, such data collection was performed using

expensive specialized hardware that use intersecting

infrared beams to provide real-time 2D and 3D

localization of animal and related software [1]. Much

easier and more cost-effective ways to collect such data is

to record overhead videos for further analysis. Video

analysis software solutions on the market, like TopScan by

CleverSys [2] rely on traditional computer vision-based

image analysis and, hence require elaborate manual

marking up of image areas before the analysis can be

conducted. While quite successful in providing overall

behavioral metrics, face significant difficulties in

analyzing more complex patterns. In order to detect

rearing events it requires the mouse to place 2 paws on the

outside wall on the 2 outside walls of the enclosure.

Besides being unable to detect rearing near inner walls it’s

also very demanding to the video quality and resolution.

This project is a proof of concept to assess feasibility of

using machine learning algorithms in providing similar or

better analysis features. It was implemented in Tensorflow

1.1 [3] and uses ImageNet-trained SqueezeNet network [4]

with final classifier (1000-conv2d/relu/avg-pool) layers are

replaced with similar 256-feature-computing layers,

followed by 2 fully-connected layers for final event

classification into 6 classes: empty field, walking,

grooming, looking up, rearing on the wall and rearing

freely (Figure 1).

The results demonstrate that generic pre-trained CNNs

allow static classification without temporal features with

minimal training and significantly high precision even

without CNN layers fine tuning, while the latter noticeably

improve such precision even further.

Deep Rearing: Mice Behaviour Analysis in Open Field Test using CNN

Kostya Sebov

Stanford University

ksebov@stanford.edu

Figure 1: Gathering video in Open Field test and

classification events

Grooming

Walking

Rearing

Looking up

2

2. Related Work

The majority of existing video analysis research uses

traditional computer vision techniques to extract features

from video frames and only uses machine learning

algorithms to analyze the latter.

In [5] authors present a complex integrated hardware

and software system that combines synchronized top view

video tracking with 3D depth sensing and traditional

computer vision algorithms to extract 27 features then uses

various machine learning approaches for automatic

detection and quantification of social behaviors involving

close and dynamic interactions between two mice of

different coat colors in their home cage.

[6] groups together several open source projects into

one toolbox and yet none of the tools use CNNs to perform

low-level image analysis.

A software system presented in [7] uses both

convolution and morphology methods to extract as many

as 3720 features per frame in the context of mice

behaviour analysis. The software also allows temporal

factors to be used to classify complex behaviour patterns.

3. Dataset

For training and evaluation purposes open field video

file (open_field_vid1.avi) available from [6] was used.

3.1. Labeling:

The video has been manually labeled at a frame level

into 5 types:

 Empty

 Looking up

 Grooming

 Rearing on the wall

 Rearing freely

Unlabeled frames were assigned a default “Walking”

class.

Although not required to differentiate between rearing

on the wall—most common case then the animal is

touching the wall with its front paws—and when it’s

simply standing up, we analyzed these as two classes.

Duration 10 min

55 sec

Resolution 848x480

Format MPEG-4

(XVID)

FPS 29.97

Frames 19000+

length

Since some fames can be ambiguous to classify even for

human we assumed some level of error and in order to

make the data usable for future temporal analysis we

limited the duration of each individual event to no less

than 10 frames (1/3 of a second).

Using OpenCV [8], the video frames have been

converted to grayscale, cropped to the relevant region and

resized to 224x224 resolution, as expected by ImageNet-

classifier [9] and have been saved along with event

directory and index into HDF5 [10] database file.

Figure 2: Total number of

frames per event type

Total frames

empty

grooming

walking

looking up

rearing

rearing freely

Table 1: Dataset key

characteristics

Event occurence within video

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Frame #

C
la

s
s

Figure 4: Event occurrence within video

Frequency of event duration

0

5

10

15

20

25

30

35

40

45

50

20 40 60 80 100 120 140 160 180 200 More

Bin (# of frames)

Fr
e

q
u

e
n

cy

grooming

rearing freely

walking

looking up

rearing

Figure 3: Frequency of event duration

3

3.2. Dataset augmentation

In order to achieve higher variability in our training data

the frames have been subjected to the following

modifications:

 Rotation by 0, 90, 180 and 270 degrees

 Mirror Image

 Negative image

Therefore each frame has been used 16 times in total—

either for training or testing/validation.

4. Architecture

4.1. Knowledge transfer with SqueezeNet

In order to avoid excessive need of training on our

limited set of data it was decided to take advantage of an

ImageNet-pre-trained CNN. Homework assignment #3 of

Stanford cs231n course provided a variant of SqueezeNet-

style network [11] implemented in Tensorflow along with

the checkpoint containing weights already pre-trained on

ImageNet dataset.

Interestingly enough, the network was not capable of

correctly classifying frames from our data set as well as

stock images of mice as shown in Figure 5.

4.2. Preprocessing layers

Besides the layers adopted from the cs231n/hw3 the

network consists of several initial layer designed to:

 Convert the grayscale database images to the rgb

expected by the CNN

 Implement data augmentation by rotating, flipping

and inverting input images according to

augmentation parameter

 Image normalization from SqueezeNet training set

mean and standard deviation

4.3. SqueezeNet layer modifications

Final 2 layers have been modified to produce 256 image

features instead of 1000 classification scores.

4.4. Simple classifier

On top a simple linear classifier has been added with 1

fully connected layer with relu activation and final 6-class

fully-connected layer with no activation. The classifier

also used 2 dropout layer providing regularization.

In the future work it is planned to replace this classifier

with several RNN layers to account for temporal event

characteristics.

Name Layer Output size

Input 224x224x1

Convert to rgb stack 224x224x3

Augmentation rotation+flip+negative 224x224x3

Normalization -mean /std 224x224x3

Cs321n hw3 conv3x3/2x64+relu 111x111x64

 maxpool 3x3/2 55x55x64

 fire 16 55x55x128

 fire 16 55x55x128

 maxpool 3x3/2 27x27x128

 fire 32 27x27x265

 fire 32 27x27x256

 maxpool 3x3/2 13x13x256

 fire 48 13x13x384

 fire 48 13x13x384

 fire 64 13x13x512

 fire 64 13x13x512

Image features conv1x1x256+relu 13x13x256

 global average 256

Simple classifier dropout 256

 fc256x256+relu 256

 dropout 256

 fc256x6 6

 softmax/cross-entropy 6

Loss weighted sum 1

Evaluation confusion matrix 6x6

 accu/precision/recall/f1 1+1+1+1

Table 2: Neural network layers

Figure 5: Case of “mice-classification”: Failure by pre-trained SqueezeNet to classify stock mice images

4

4.5. Loss and evaluation layers

For each sample in the minibatch softmax with sparse

cross-entropy has been used. In order to account for highly

skewed data set the final batch-wide loss used sum of

individual sample losses weighted by inverse of the

probability of the ground truth sample according to the

following formulas:

For immediate network performance during learning we

used absolute batch loss value as well as exact match

accuracy.

Periodically for validation set evaluation as well as for

final test performance we used confusion matrix for all 6

classes as well as F1 score for 2 rearing classes 4 and 5,

where we considered positive outcome when either or

those classes were predicted.

4.6. Experiments

4.7. Dataset partitioning

The whole dataset has been randomly partitioned

80/10/10 between training validation and testing.

Furthermore to avoid highly correlated successive video

frames, 270 degree rotation has been specifically reserved

for validation and testing subsets.

Figure 6: Tensorboard visualization of various hyperparameter combination runs

5

All training examples were subjected to all 16

combinations of augmentation transformations.

During training minibatch samples were randomly

selected from the whole range of data with the same

minibatch cycled through all augmentation combinations

(except the ones reserved for validation/testing)

After every 5 training/augmentation minibatch sets a

cumulative F1 score and confusion matrix have been

computed for the whole validation subset though batches

of 256 samples. These metrics were recorded in

Tensorboard [12] summaries for monitoring and analysis.

4.8. Hyperparameters

For training we used Adam optimizer with minibatch

size of 64 and initial learning rate of 1e-4. The weights

were initialized with default Xavier initializer, except for

the SqueezeNet layer, which have been loaded from the

downloaded checkpoint. 0.5 has been used for dropout

regularization.

We evaluated the following combination of

hyperparemeter settings:

 Fine-tune Squeezenet Layers: ON or OFF

 Number of epochs: 6 or 12

 Learning rate decay: 0.9999 or 1 (no decay)

 Number of agmentations: 8 (no negative) or 16

Figure 6 and 7 illustrate the progress of traing using

various combination of the above hyperparameters and

the final confusion matrices respectively.

4.9. Training runs

Training runs involving SqueezeNet layers fine-tuning

have been performed on an instance of a Google Cloud

with NVIDIA Tesla K80 GPU with 12GB of available

RAM at a rate of roughly 1 16-aumented epoch per hour.

Non-fine-tuning runs have been performed on a Dell PC

using NVIDIA GTX960 GPU with 4GB available RAM at

about the same time per epoch.

4.10. Dealing with imbalanced dataset

The first challenge to overcome was the imbalance

nature of the data set—smallest class (grooming) is

represented by 20 as few frames as the largest (walking).

While our most useful rearing classes account for 20% of

data one needs to be careful to create the network that pays

more attention to infrequent classes and makes sure to

learn more from them when they are encountered.

The earliest iteration of the model used uniform batch

loss and it gravitated heavily towards the largest (walking)

class failing to classify most of the remaining ones. Once

weighted loss has been implemented this problem

disappeared.

4.11. Dealing with overfitting

While imbalanced data was relatively easy to handle the

biggest challenge in achieving meaningful results proved

to be overfitting. Limited data set with highly correlated

samples—by the very nature of continuous stream of video

frames—made training particularly susceptible to this

problem.

As model evolved various iterations produced

unrealistically good results and their analysis demonstrated

that while the network was good at memorizing the data

using limited set of bottle-neck image features, this was of

limited use when applied to the new data, be it a variant of

new augmentation transforms or totally new video.

The first break through in achieving useful results was

to reserve one rotation setting exclusively for validation.

Once this feature is implemented one could easily observe

the divergence of training and validation metrics and

presented the need for regularization tools. Dropout has

been very successful in achieving generalized.

The interactive classification tool described in the next

Figure 7: Tensorboard visualization final confusion matrices of best 3 models

6

section has been helpful in explaining model’s mistake and

lead to some improvement ideas, e.g. data augmentation

with negative images.

4.12. “Understanding” model decisions

In order to trouble shoot overfitting and other training

problem a tool allowing for interactive video analysis and

classification has been developed.

The tool accepts any video and in real time classifies

each frame, providing confidence levels for classes with

softmax scores over 1%. The tool super imposes saliency

map over the image to verify the model’s “decision

process” and spot potential source of mistakes.

It is also possible to do some basic transformation on

the source video, e.g. cropping, rotation, contrast,

sharpening or negative to test possible solutions to the

classification mistakes as well as save the result in another

video. Examples of the latter can be seen on at

https://www.dropbox.com/sh/h4q5708r22x23tp/AAAo6L

OE31O63Tgi7BSeHooNa?dl=0

5. Results

Table 3 summarizes final metrics of the best models.

Fine-tune

CNN

Other Hyperparameters Min

Loss

Val.

EM

Val.

F1

No augm 16, lr decay <1 1.95 95.4 86.1

Yes augm 16, lr decay =1 1.16 95.9 96.5

Yes augm 16, le decay <1 0.78 97.7 96.4

Table 3: Final result of the 3 best models

5.1. Gitlab

The project source code is available at

https://gitlab.com/ksebov/alcamice

5.2. Analysis and conclusion

The results clearly show that static image analysis has

clear potential in identifying basic events in individual

frames of video with static analysis. While future models

are likely to require RNN layers to handle temporal aspect

of animal behaviour, for relatively simple events it doesn’t

seem to be necessary.

Another, somewhat expected result is that knowledge

transfer from pre-trained general-purpose networks really

helps to achieve useful results with a few hours of training

on modest hardware. While fine-tuning of deeper general-

purpose layers does noticeably improve performance it is

not critical and can be optionally switched off in the

environments with limited resources.

5.3. Future Work

Frankly, there is still suspicion that surprisingly good

results indicate some level of overfitting to the particular

conditions of the experiment. While I’m quite confident

the model will perform well when analyzing new videos

shot under the same conditions—same box, lighting,

camera, color of mouse—still a valuable result, it struggled

classifying videos shot under different circumstances.

Textured background, white mice (very common in lab

setting), foreign objects and markings, shaky camera, non-

centered view, occlusions—all these factors significantly

confused the model. Unfortunately, labeling and training

Figure 8: Sample frame from the video classification tool

https://www.dropbox.com/sh/h4q5708r22x23tp/AAAo6LOE31O63Tgi7BSeHooNa?dl=0
https://www.dropbox.com/sh/h4q5708r22x23tp/AAAo6LOE31O63Tgi7BSeHooNa?dl=0
https://gitlab.com/ksebov/alcamice

7

on this new data was too time consuming for the purpose

of this project it showed that there is still work necessary

to achieve truly universal setup-free solution.

Particularly important problem to address is models

being able to work with low quality images and infrared or

near-infrared images as it is often impossible to obtain

good lighting conditions for the camera since the animals

may be sensitive to bright light thus changing the

behaviour being analyzed.

Furthermore, the model can be extended with other

classifiers, like animal localization, pose estimation

multiple animal detection. Adding RNN layers may prove

useful in removing data noise as well as detecting detect

complex patterns like novel object exploration, inter-

animal interactions or motion traits.

5.4. Acknowledgements

I would like to thank my wife Viktoria Kheifets for her

handling the most mundane aspect of this project—the

data labeling—as well as for her help, patience and

support. I am also grateful to her colleagues at Alkahest,

Inc. Arnaud Teichert and Ian Gallager for their

encouragement and insight into the specifics of the field.

References

[1] Tatem K S, Quinn J L, Phadke A, Yu Q, Gordish-Dressman

H, Nagaraju K, Behavioral and Locomotor Measurements

Using an Open Field Activity Monitoring System for

Skeletal Muscle Diseases., 2014,

http://dx.doi.org/10.3791/51785

[2] TopScan Suite (software) by CleverSys,

http://cleversysinc.com/CleverSysInc/csi_products/topscan-

suite/

[3] TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015, http://tensorflow.org/

[4] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, K. Keutzer, SqueezeNet: AlexNet-level accuracy

with 50x fewer parameters and <0.5MB model size,

 arXiv:1602.07360

[5] Hong, W., Kennedy, A., Burgos-Artizzu, X. P., Zelikowsky,

M., Navonne, S. G., Perona, P., & Anderson, D. J. (2015).

Automated measurement of mouse social behaviors using

depth sensing, video tracking, and machine learning.

Proceedings of the National Academy of Sciences of the

United States of America, 112(38), E5351–E5360.

http://doi.org/10.1073/pnas.1515982112

[6] Patel, T. P., Gullotti, D. M., Hernandez, P., O’Brien, W. T.,

Capehart, B. P., Morrison, B., Meaney, D. F. (2014). An

open-source toolbox for automated phenotyping of mice in

behavioral tasks. Frontiers in Behavioral Neuroscience, 8,

349.

http://doi.org/10.3389/fnbeh.2014.00349

http://www.seas.upenn.edu/~molneuro/autotyping.html

[7] Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson

K., JAABA: interactive machine learning for automatic

annotation of animal behavior., Nat Methods. 2013

Jan;10(1):64-7. doi: 10.1038/nmeth.2281. Epub 2012 Dec

2,

https://www.researchgate.net/publication/233828747_JAA

BA_Interactive_machine_learning_for_automatic_annotatio

n_of_animal_behavior

[8] Rosebrock A, Basic motion detection and tracking with

Python and OpenCV, 2015,

http://www.pyimagesearch.com/2015/05/25/basic-motion-

detection-and-tracking-with-python-and-opencv/

[9] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S,

Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC,

Fei-Fei L, ImageNet Large Scale Visual Recognition

Challenge. IJCV, 2015 arXiv:1409.0575

[10] The HDF Group, Hierarchical data format version 5, 2000-

2010, http://www.hdfgroup.org/HDF5

[11] Li FF, Johnson J, Yeung S, Stanford CS231n:

Convolutional Neural Networks for Visual Recognition,

Assignment3

http://cs231n.github.io/assignments2017/assignment3/

http://cs231n.stanford.edu/assignments/2017/spring1617_as

signment3_v3.zip

http://cs231n.stanford.edu/squeezenet_tf.zip

[12] Mané D, Hands-on TensorBoard (TensorFlow Dev Summit

2017), https://www.youtube.com/watch?v=eBbEDRsCmv4

http://cleversysinc.com/CleverSysInc/csi_products/topscan-suite/
http://cleversysinc.com/CleverSysInc/csi_products/topscan-suite/
http://doi.org/10.3389/fnbeh.2014.00349
https://www.researchgate.net/publication/233828747_JAABA_Interactive_machine_learning_for_automatic_annotation_of_animal_behavior
https://www.researchgate.net/publication/233828747_JAABA_Interactive_machine_learning_for_automatic_annotation_of_animal_behavior
https://www.researchgate.net/publication/233828747_JAABA_Interactive_machine_learning_for_automatic_annotation_of_animal_behavior
http://www.hdfgroup.org/HDF5
http://cs231n.stanford.edu/squeezenet_tf.zip

	1. Introduction
	2. Related Work
	3. Dataset
	3.1. Labeling:
	length
	3.2. Dataset augmentation

	4. Architecture
	4.1. Knowledge transfer with SqueezeNet
	4.2. Preprocessing layers
	4.3. SqueezeNet layer modifications
	4.4. Simple classifier
	4.5. Loss and evaluation layers
	4.6. Experiments
	4.7. Dataset partitioning
	4.8. Hyperparameters
	4.9. Training runs
	4.10. Dealing with imbalanced dataset
	4.11. Dealing with overfitting
	4.12. “Understanding” model decisions

	5. Results
	5.1. Gitlab
	5.2. Analysis and conclusion
	5.3. Future Work
	5.4. Acknowledgements

	References

