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Abstract 

 

Existing software solutions used to analyze overhead 

video recording of mice movement in an Open Field test 

rely on traditional computer vision-based image analysis. 

While quite successful in providing basic behavioral 

metrics, face significant difficulties in analyzing more 

complex patterns. In addition, they require elaborate 

setup and configuration to work properly. Machine-

learning and convolutional neural networks (CNN) 

specifically promise to be less susceptible to these 

limitations and provide fully automated workflow, 

accommodating to wider margin of image resolution and 

quality. This project is an attempt to detect 6 types of 

events of mice behaviour in the context of an open field 

test, paying particular attention to detecting rearing, or 

standing on rear limbs using pre-trained generic CNN 

with minimal training. 

 

1. Introduction 

Drug development requires testing of novel compounds 

in animal models of human disease. The Open Field is one 

of the most known primary behavioral tests. It is a useful 

tool for assessing impairment in animal models of 

neuromuscular disease and efficacy of therapeutic drugs 

that may affect locomotion and/or muscle function. During 

the test, movements of a mouse is analyzed for basic 

metrics like distance traveled or interior/exterior 

preference as well as more complex patterns, like 

interacting with objects or standing on rear limbs (rearing). 

Traditionally, such data collection was performed using 

expensive specialized hardware that use intersecting 

infrared beams to provide real-time 2D and 3D 

localization of animal and related software [1]. Much 

easier and more cost-effective ways to collect such data is 

to record overhead videos for further analysis. Video 

analysis software solutions on the market, like TopScan by 

CleverSys [2] rely on traditional computer vision-based 

image analysis and, hence require elaborate manual 

marking up of image areas before the analysis can be 

conducted. While quite successful in providing overall 

behavioral metrics, face significant difficulties in 

analyzing more complex patterns. In order to detect 

rearing events it requires the mouse to place 2 paws on the 

outside wall on the 2 outside walls of the enclosure. 

Besides being unable to detect rearing near inner walls it’s 

also very demanding to the video quality and resolution. 

This project is a proof of concept to assess feasibility of 

using machine learning algorithms in providing similar or 

better analysis features. It was implemented in Tensorflow 

1.1 [3] and uses ImageNet-trained SqueezeNet network [4] 

with final classifier (1000-conv2d/relu/avg-pool) layers are 

replaced with similar 256-feature-computing layers, 

followed by 2 fully-connected layers for final event 

classification into 6 classes: empty field, walking, 

grooming, looking up, rearing on the wall and rearing 

freely (Figure 1).  

The results demonstrate that generic pre-trained CNNs 

allow static classification without temporal features with 

minimal training and significantly high precision even 

without CNN layers fine tuning, while the latter noticeably 

improve such precision even further. 
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Figure 1: Gathering video in Open Field test and 

classification events 
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2. Related Work 

The majority of existing video analysis research uses 

traditional computer vision techniques to extract features 

from video frames and only uses machine learning 

algorithms to analyze the latter. 

In [5] authors present a complex integrated hardware 

and software system that combines synchronized top view 

video tracking with 3D depth sensing and traditional 

computer vision algorithms to extract 27 features then uses 

various machine learning approaches for automatic 

detection and quantification of social behaviors involving 

close and dynamic interactions between two mice of 

different coat colors in their home cage. 

[6] groups together several open source projects into 

one toolbox and yet none of the tools use CNNs to perform 

low-level image analysis. 

A software system presented in [7] uses both 

convolution and morphology methods to extract as many 

as 3720 features per frame in the context of mice 

behaviour analysis. The software also allows temporal 

factors to be used to classify complex behaviour patterns. 

3. Dataset 

For training and evaluation purposes open field video 

file (open_field_vid1.avi) available from [6] was used. 

3.1. Labeling: 

The video has been manually labeled at a frame level 

into 5 types:  

 Empty 

 Looking up 

 Grooming 

 Rearing on the wall 

 Rearing freely 

 

Unlabeled frames were assigned a default “Walking” 

class.  

Although not required to differentiate between rearing 

on the wall—most common case then the animal is 

touching the wall with its front paws—and when it’s 

simply standing up, we analyzed these as two classes. 

Duration 10 min  

55 sec 

Resolution 848x480 

Format MPEG-4 

(XVID) 

FPS 29.97 

Frames 19000+ 

length 

 

Since some fames can be ambiguous to classify even for 

human we assumed some level of error and in order to 

make the data usable for future temporal analysis we 

limited the duration of each individual event to no less 

than 10 frames (1/3 of a second). 

Using OpenCV [8], the video frames have been 

converted to grayscale, cropped to the relevant region and 

resized to 224x224 resolution, as expected by ImageNet-

classifier [9] and have been saved along with event 

directory and index into HDF5 [10] database file. 

Figure 2: Total number of 

frames per event type 

Total frames

empty

grooming

walking

looking up

rearing

rearing freely

Table 1: Dataset key 

characteristics 
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3.2. Dataset augmentation 

In order to achieve higher variability in our training data 

the frames have been subjected to the following 

modifications: 

 

 Rotation by 0, 90, 180 and 270 degrees  

 Mirror Image 

 Negative image 

 

Therefore each frame has been used 16 times in total—

either for training or testing/validation. 

4. Architecture 

4.1. Knowledge transfer with SqueezeNet 

In order to avoid excessive need of training on our 

limited set of data it was decided to take advantage of an 

ImageNet-pre-trained CNN. Homework assignment #3 of 

Stanford cs231n course provided a variant of SqueezeNet-

style network [11] implemented in Tensorflow along with 

the checkpoint containing weights already pre-trained on 

ImageNet dataset. 

Interestingly enough, the network was not capable of 

correctly classifying frames from our data set as well as 

stock images of mice as shown in Figure 5. 

4.2. Preprocessing layers 

Besides the layers adopted from the cs231n/hw3 the 

network consists of several initial layer designed to: 

 

 Convert the grayscale database images to the rgb 

expected by the CNN 

 Implement data augmentation by rotating, flipping 

and inverting input images according to 

augmentation parameter 

 Image normalization from SqueezeNet training set 

mean and standard deviation 

 

4.3. SqueezeNet layer modifications 

Final 2 layers have been modified to produce 256 image 

features instead of 1000 classification scores. 

4.4. Simple classifier 

On top a simple linear classifier has been added with 1 

fully connected layer with relu activation and final 6-class 

fully-connected layer with no activation. The classifier 

also used 2 dropout layer providing regularization. 

In the future work it is planned to replace this classifier 

with several RNN layers to account for temporal event 

characteristics. 

 

 
Name Layer Output size 

Input  224x224x1 

Convert to rgb stack 224x224x3 

Augmentation rotation+flip+negative 224x224x3 

Normalization -mean /std 224x224x3 

Cs321n hw3 conv3x3/2x64+relu 111x111x64 

 maxpool 3x3/2 55x55x64 

 fire 16 55x55x128 

 fire 16 55x55x128 

 maxpool 3x3/2 27x27x128 

 fire 32 27x27x265 

 fire 32 27x27x256 

 maxpool 3x3/2 13x13x256 

 fire 48 13x13x384 

 fire 48 13x13x384 

 fire 64 13x13x512 

 fire 64 13x13x512 

Image features conv1x1x256+relu 13x13x256 

 global average 256 

Simple classifier dropout 256 

 fc256x256+relu 256 

 dropout 256 

 fc256x6 6 

 softmax/cross-entropy 6 

Loss weighted sum 1 

Evaluation confusion matrix 6x6 

 accu/precision/recall/f1 1+1+1+1 

Table 2: Neural network layers 

 

Figure 5: Case of “mice-classification”: Failure by pre-trained SqueezeNet to classify stock mice images 
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4.5. Loss and evaluation layers 

For each sample in the minibatch softmax with sparse 

cross-entropy has been used. In order to account for highly 

skewed data set the final batch-wide loss used sum of 

individual sample losses weighted by inverse of the 

probability of the ground truth sample according to the 

following formulas: 

 

 

For immediate network performance during learning we 

used absolute batch loss value as well as exact match 

accuracy. 

Periodically for validation set evaluation as well as for 

final test performance we used confusion matrix for all 6 

classes as well as F1 score for 2 rearing classes 4 and 5, 

where  we considered positive outcome when either or 

those classes were predicted.  

4.6. Experiments 

4.7. Dataset partitioning 

The whole dataset has been randomly partitioned 

80/10/10 between training validation and testing. 

Furthermore to avoid highly correlated successive video 

frames, 270 degree rotation has been specifically reserved 

for validation and testing subsets. 

Figure 6: Tensorboard visualization of various hyperparameter combination runs 
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All training examples were subjected to all 16 

combinations of augmentation transformations. 

During training minibatch samples were randomly 

selected from the whole range of data with the same 

minibatch cycled through all augmentation combinations 

(except the ones reserved for validation/testing) 

After every 5 training/augmentation minibatch sets a 

cumulative F1 score and confusion matrix have been 

computed for the whole validation subset though batches 

of 256 samples. These metrics were recorded in 

Tensorboard [12] summaries for monitoring and analysis. 

4.8. Hyperparameters 

For training we used Adam optimizer with minibatch 

size of 64 and initial learning rate of 1e-4. The weights 

were initialized with default Xavier initializer, except for 

the SqueezeNet layer, which have been loaded from the 

downloaded checkpoint. 0.5 has been used for dropout 

regularization.  

We evaluated the following combination of 

hyperparemeter settings: 

 

 Fine-tune Squeezenet Layers: ON or OFF 

 Number of epochs: 6 or 12 

 Learning rate decay: 0.9999 or 1 (no decay) 

 Number of agmentations: 8 (no negative) or 16 

 

Figure 6 and 7 illustrate the progress of traing using 

various combination of the above hyperparameters and 

the final confusion matrices respectively. 

4.9. Training runs 

Training runs involving SqueezeNet layers fine-tuning 

have been performed on an instance of a Google Cloud 

with NVIDIA Tesla K80 GPU with 12GB of available 

RAM at a rate of roughly 1 16-aumented epoch per hour. 

Non-fine-tuning runs have been performed on a Dell PC 

using NVIDIA GTX960 GPU with 4GB available RAM at 

about the same time per epoch. 

4.10. Dealing with imbalanced dataset 

The first challenge to overcome was the imbalance 

nature of the data set—smallest class (grooming) is 

represented by 20 as few frames as the largest (walking). 

While our most useful rearing classes account for 20% of 

data one needs to be careful to create the network that pays 

more attention to infrequent classes and makes sure to 

learn more from them when they are encountered. 

The earliest iteration of the model used uniform batch 

loss and it gravitated heavily towards the largest (walking) 

class failing to classify most of the remaining ones. Once 

weighted loss has been implemented this problem 

disappeared.  

4.11. Dealing with overfitting 

While imbalanced data was relatively easy to handle the 

biggest challenge in achieving meaningful results proved 

to be overfitting. Limited data set with highly correlated 

samples—by the very nature of continuous stream of video 

frames—made training particularly susceptible to this 

problem. 

As model evolved various iterations produced 

unrealistically good results and their analysis demonstrated 

that while the network was good at memorizing the data 

using limited set of bottle-neck image features, this was of 

limited use when applied to the new data, be it a variant of 

new augmentation transforms or totally new video.  

The first break through in achieving useful results was 

to reserve one rotation setting exclusively for validation. 

Once this feature is implemented one could easily observe 

the divergence of training and validation metrics and 

presented the need for regularization tools. Dropout has 

been very successful in achieving generalized. 

The interactive classification tool described in the next 

Figure 7: Tensorboard visualization final confusion matrices of best 3 models 
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section has been helpful in explaining model’s mistake and 

lead to some improvement ideas, e.g. data augmentation 

with negative images. 

4.12. “Understanding” model decisions 

In order to trouble shoot overfitting and other training 

problem a tool allowing for interactive video analysis and 

classification has been developed. 

The tool accepts any video and in real time classifies 

each frame, providing confidence levels for classes with 

softmax scores over 1%. The tool super imposes saliency 

map over the image to verify the model’s “decision 

process” and spot potential source of mistakes. 

It is also possible to do some basic transformation on 

the source video, e.g. cropping, rotation, contrast, 

sharpening or negative to test possible solutions to the 

classification mistakes as well as save the result in another 

video. Examples of the latter can be seen on at 

 

https://www.dropbox.com/sh/h4q5708r22x23tp/AAAo6L

OE31O63Tgi7BSeHooNa?dl=0  

5. Results 

Table 3 summarizes final metrics of the best models. 

 
Fine-tune 

CNN 

Other Hyperparameters Min 

Loss 

Val. 

EM 

Val. 

F1 

No augm 16, lr decay <1 1.95 95.4 86.1 

Yes augm 16, lr decay =1 1.16 95.9 96.5 

Yes augm 16, le decay <1 0.78 97.7 96.4 

Table 3: Final result of the 3 best models 

5.1. Gitlab 

The project source code is available at 

https://gitlab.com/ksebov/alcamice  

5.2. Analysis and conclusion 

The results clearly show that static image analysis has 

clear potential in identifying basic events in individual 

frames of video with static analysis. While future models 

are likely to require RNN layers to handle temporal aspect 

of animal behaviour, for relatively simple events it doesn’t 

seem to be necessary. 

Another, somewhat expected result is that knowledge 

transfer from pre-trained general-purpose networks really 

helps to achieve useful results with a few hours of training 

on modest hardware. While fine-tuning of deeper general-

purpose layers does noticeably improve performance it is 

not critical and can be optionally switched off in the 

environments with limited resources. 

5.3. Future Work 

Frankly, there is still suspicion that surprisingly good 

results indicate some level of overfitting to the particular 

conditions of the experiment. While I’m quite confident 

the model will perform well when analyzing new videos 

shot under the same conditions—same box, lighting, 

camera, color of mouse—still a valuable result, it struggled 

classifying videos shot under different circumstances.  

Textured background, white mice (very common in lab 

setting), foreign objects and markings, shaky camera, non-

centered view, occlusions—all these factors significantly 

confused the model. Unfortunately, labeling and training 

Figure 8: Sample frame from the video classification tool 

https://www.dropbox.com/sh/h4q5708r22x23tp/AAAo6LOE31O63Tgi7BSeHooNa?dl=0
https://www.dropbox.com/sh/h4q5708r22x23tp/AAAo6LOE31O63Tgi7BSeHooNa?dl=0
https://gitlab.com/ksebov/alcamice
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on this new data was too time consuming for the purpose 

of this project it showed that there is still work necessary 

to achieve truly universal setup-free solution. 

Particularly important problem to address is models 

being able to work with low quality images and infrared or 

near-infrared images as it is often impossible to obtain 

good lighting conditions for the camera since the animals 

may be sensitive to bright light thus changing the 

behaviour being analyzed. 

Furthermore, the model can be extended with other 

classifiers, like animal localization, pose estimation 

multiple animal detection. Adding RNN layers may prove 

useful in removing data noise as well as detecting detect 

complex patterns like novel object exploration, inter-

animal interactions or motion traits.  
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