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Abstract

In this project, we take on the Kaggle challenge “Planet:
Understanding the Amazon from Space”. Our goal is to ac-
curately label satellite images with atmospheric conditions,
land use and land cover. We start with the background of
the challenge and a brief overview of how we have modeled
the problem. We then examine related work that is relevant
to this project. In the methods section, we describe the main
approach we use for getting to results. A description of the
dataset we use comes next, followed by a description of our
experiments. Finally, we close with conclusions and areas
of future investigation.

1. Introduction

1.1. Background

Deforestation in the Amazon basin contributes to re-
duced biodiversity, habitat loss, climate change, and other
devastating effects. Combating deforestation requires de-
tection and understanding of markers of human activity
over large regions of Earth. Utilizing automated analysis
of satellite images to detect these markers can enable faster
and more effective responses to activity that indicates or
precedes deforestation.

The Kaggle competition “Planet: Understanding the
Amazon from Space” challenges participants to develop
machine learning algorithms that can accurately label satel-
lite images. The problem is interesting for a few reasons -
first is that a successful solution will have significant real-
world impact. Second, the nature of images we work with
in this project are fairly different from Imagenet, which
is where most pre-trained models appear to operate. This
gives us the opportunity to see if techniques developed for
Imagenet can transfer to a different type of problem. Fi-
nally, this is a multi-label classification problem, which
brings up some interesting challenges around label corre-
lations.

1.2. Problem setup

The input to our algorithm is a satellite image of the
Amazon basin. The image is represented as a 256x256 grid
of pixels and 3 or 4 channels, described further in the data
section. We then use a Convolutional Neural Network to
output one or more predicted labels, belonging to a set of
17 possible labels, describing atmospheric conditions, land
cover and land use in the input image. The primary perfor-
mance metric is the average F2 score on the validation or
test dataset.

2. Related work

Understanding satellite imagery has been an active area
of research for applications ranging from mapping, to sep-
arating bad data from good data, to understanding social
impact of world events. Much of the work in mapping has
focused on detection of roads in aerial images. For exam-
ple, in [12], the authors use neural networks trained on large
amounts of data to detect roads. Their work demonstrates
the utility of incorporating unsupervised learning as well as
spatial context in computer vision tasks. The authors build
upon this work by making it more robust to noisy labels, and
use deep neural networks with local connectivity in [13].
Another approach to detecting roads is used in [14], where
a multi-step learning approach first identifies road centers,
then iteratively builds more global structures.

A more general approach is taken in [9], where satellite
images are mapped to feature vectors that are then used to
power a nearest neighbor search. This allows efficient vi-
sual search for images that share semantic meaning. This
work uses a model pre-trained on Imagenet, indicating the
potential validity of transfer search in very different con-
texts. Pre-trained models are also used in [4], where a
comparison is made to more traditional feature based ap-
proaches. Similarly, [6] discusses transfer learning from
Imagenet, and compared approaches that use features from
various levels of pre-trained models.

In [7], the authors use deep neural networks trained on
nighttime and daytime images, coupled with survey data, to
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predict household income and poverty for subjects living in
the photographed regions.

Multi-label classification can be seen as a related prob-
lem to image segmentation, where the classes of detected
image segments become labels of the image. [3] uses im-
age segmentation on satellite imagery to label pictures of
urban areas. Another example of using per-pixel segmenta-
tion approaches can be found in [8].

A key aspect of the problem of labeling satellite imagery
involves dealing with correlated labels. Multi-label classi-
fication has been extensively studied, and a few types of
approaches dominate. A good overview can be obtained in
[19]. [15] explicitly addresses constraints that can exist on
labels in a multi-label setting. Maximizing the likelihood of
observed labels using generative models is another interest-
ing approach described in [11]. Multi-label classification
can be interpreted as a ranking problem, as demonstrated in
[5], where the authors combine a ranking objective with a
convolutional neural network to beat prevalent benchmarks.

Recent work has demonstrated the possibility of us-
ing Recurrent Neural Networks coupled with Convolutional
Neural Networks for multi-label image annotation, using
approaches that can be compared to the task of image cap-
tioning. [17] is an excellent example of this approach, and
appears to be very relevant to the subject problem in this
report.

Finally, given the importance of the F2 measure for this
project, incorporating strategies that optimize the measure
are central to the problem. [10] discusses the relationship
between optimal score thresholds and various thresholding
strategies, while [18] finds that simple empirical determi-
nation of thresholds can be effective.

3. Methods

3.1. Architecture

We use the Inception V3 model trained on Imagenet as
the base model in our setup, using code from [1] to get
started. Inception V3 is described in [16]. The architec-
ture described in the paper allows the network to scale sub-
stantially without a large increase in number of parameters
or training time, and extensively uses four design princi-
ples. This made it a good choice for our application, as we
wanted a network that can be trained quickly, and which
benefits from recent advances in network architectures.

The Inception V3 model has 310 basic layers. We have
trained layers 172 onwards on our data using a low learning
rate.

The output of the Inception model is fed to a global av-
erage pooling layer. This is followed by a dense layer with
512 nodes, ReLU activation and L2 regularization. The fi-
nal layer is a 17 unit dense layer with sigmoid activation,
which outputs the predictions of our algorithm.

Class label Threshold
agriculture 0.17999999999999999
artisinal mine 0.13
bare ground 0.19
blooming 0.17000000000000001
blow down 0.050000000000000003
clear 0.14999999999999999
cloudy 0.20999999999999999
conventional mine 0.089999999999999997
cultivation 0.22
habitation 0.19
haze 0.23000000000000001
partly cloudy 0.23000000000000001
primary 0.28999999999999998
road 0.17999999999999999
selective logging 0.10000000000000001
slash burn 0.10000000000000001
water 0.14999999999999999

Table 1: Class thresholds. We see large variability in thresh-
olds that lead to optimal F2 scores.

The final labels for the image are derived using per-label
thresholds. If a class score exceeds the threshold, we assign
that class label to the image. The thresholds vary signifi-
cantly by class, and can be seen in Table 1. The approach
used to determine the class thresholds is described in the
experiments section.

3.2. Loss

As this is a multi-label classification problem, the pri-
mary loss used during training is binary cross-entropy. This
loss optimizes the performance for each class indepen-
dently.

To help the network work with label correlations, we add
another term to the loss function. This term measures the
deviation from the expected label correlations based on the
training data. The term is computed using the following
steps.

We first compute the predicted co-occurrence for the la-
bel scores, C

y

:

C
y

= yT
p

⇥ y
p

where y
p

is the vector with the predicted class scores.
The co-occurrence loss term L

c

is then given by:

L
c

=
X

C
y

⇤ C
o

where C
o

is the observed label co-occurrence in the
training data.

The overall loss L is a weighted sum of the binary cross-
entropy loss and the co-occurrence loss:
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Train loss 0.1621
Train accuracy 0.9438
Validation loss 0.1657
Validation accuracy 0.9421
F2 score 0.8645

Table 2: Results after training dense layers after 20 epochs,
with Inception layers frozen.

L = L
ce

+ ↵L
c

where ↵ controls the relative importance of the individ-
ual loss terms, and is set to 0.0001 in our project.

Based on experiments, we use the co-occurrence matrix
only for atmospheric condition labels, and set non-diagonal
elements to 1.

3.3. Data preprocessing

The pre-trained Inception V3 model that we use requires
a minimum image size of 139x139 pixels. To keep compu-
tation tractable, we use 140x140 images in our setup. To
rescale the images, we use the resize() function in openCV.
The resize function tries to capture information from sur-
rounding pixels while scaling, which helps preserve infor-
mation in the smaller image. The image pixels are then nor-
malized using the normalize() function from openCV.

The data is then split into training and validation sets.
We use 70% of the data for training, and 30% for validation.
This gives us 28335 training samples and 12144 validation
samples. To create the training and validation splits, we use
the scipy function train test split().

3.4. Training

We follow a 2-step training process, as described below.

3.4.1 Training the dense layers

For this step, we freeze all layers of the pre-trained Incep-
tion V3 network, and train just the dense layers that we
added on top. We use the Adam optimizer, and the loss
function is modified binary cross-entropy. We train for 20
epochs, and use a batch size of 128 samples. At the end of
this step, we get the results listed in Table 2.

3.4.2 Jointly training Inception and dense layers

After training the dense layers, we train a subset of the
Inception V3 layers. We unfreeze layers 172 onwards,
and train the network for 70 epochs, using an SGD opti-
mizer with a learning rate of 0.01 and momentum 0.9. The
loss function is again modified binary cross-entropy, with a
weight of 0.0001 on the co-occurrence loss. This gives us

Train loss 0.0057
Train accuracy 0.9997
Validation loss 0.2160
Validation accuracy 0.9529
F2 score 0.8894

Table 3: Results after joint training after 70 epochs, with
some Inception layers unfrozen.

Figure 1: Co-occurrence among image labels. Numbers
along axes represent label classes.

the results listed in Table 3. We see a clear improvement in
the F2 score. Note that the network has overfit the training
data, and there is opportunity to improve performance using
regularization.

4. Dataset and features

The dataset contains 40479 labeled satellite images. The
labeling has primarily been done using CrowdFlower. Two
types of images have been provided, JPG and TIF. Both JPG
and TIF images are 256x256 pixels. The JPG images have
3 channels - Red, Green and Blue. The TIF images have 4
channels - Red, Green, Blue and IR.

The public leaderboard on Kaggle uses F2 scores on test
data whose labels are withheld. The private leaderboard
uses test data that is withheld.

4.1. Correlation in labels

The labels have significant correlations. For example,
every image has exactly one atmospheric condition label
from among clear, haze, partly cloudy and cloudy. Labels
like “habitation” tend to occur with other markers of human
activity. “Cultivation” and “agriculture” don’t co-occur in
images. We utilize information from co-occurrence of la-
bels as described in the methods and experiments sections.
Fig. 1 shows a heatmap for the co-occurrence matrix for the
labels,
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Figure 2: Labeling inconsistency: Image that is labeled as
“cloudy”. We can see primary rainforest below the clouds,
which our classifier detects.

4.2. Noise in labeling

As the data has been labeled by non-expert human raters,
we see inconsistencies with the way labels have been as-
signed. For example, the “cultivation” label is supposed
to be a subset of “agriculture”. However, there are many
images that are only labeled as “cultivation”, and not “agri-
culture”. Another example of inconsistency is that some
images that have haze are only labeled with “haze”, while
others are also labeled with land features that lie under the
haze. See Figure 2 for an example of a similar issue.

5. Experiments and results

5.1. Architecture options

We experimented with two architecture options in this
project. The first was a relatively simple setup with four
convolutional layers followed by dense layers. The second
option we considered was using a model pre-trained on Im-
agenet.

5.1.1 Simple CNN

In this setup, we have four convolutional layers. Every layer
has 32 filters. We use dropout for regularization, and 2x2
max pooling for reducing the spatial resolution. The con-
volutional layers are followed by two dense layers with 256
units each. The second layer uses L2 regularization, with
regularization strength of 0.01. We use dropout between
the dense layers. Finally, the output layer is a dense layer
with 17 units, sigmoid activation and L2 regularization with
strength of 0.01.

The starter code that was used as a base for this architec-
ture is at [2].

REGULARIZATION: We started our experiments us-
ing an image size of 64x64, and observed a good
train/validation curve (Fig. 4 (a)). On experimenting with
higher resolution of 128x128, we saw significant overfit-
ting, caused by the much larger dense layer (Fig. 4 (b)).
To compensate for this, we introduced L2 regularization,
which had the desired effect of reducing overfitting (Fig. 4
(c)).

The best F2 score we achieved using this approach was
0.8974 on a 64x64 input image. For 140x140 input images,
we achieved a score of 0.8645.

5.1.2 Pre-trained model

Imagenet images appear to be significantly different to the
satellite images we encounter in this project. We therefore
started with the hypothesis that pre-trained models will not
show good results, and will not be useful for our applica-
tion.

To test this hypothesis, we created an architecture that
combined a pre-trained Inception V3 model with dense lay-
ers with sigmoid activations. Details of the architecture we
used can be found in the methods section of this report.

On training the model based on Inception V3, we find
that we can achieve significantly higher F2 score compared
to the simple CNN described in the previous section, for the
same size input image. This invalidates our hypothesis, and
shows that pre-trained models can be used in very differ-
ent settings. The reason this happens is probably that the
features learnt in the first few layers are application inde-
pendent, and represent general structures in data.

5.2. Label correlations

As described in Section 4.1, the labels in this task are
correlated. An examination of failure cases shows that us-
ing label correlation can help improve performance. Fig. 5
shows two images that have been assigned multiple atmo-
spheric condition labels, which results in mistagging.

We have attempted to address this situation using an ad-
ditional term in the loss equation, as described in the meth-
ods section. This term incentivizes co-occurrence pattern
in the predicted labels that match the co-occurrence pat-
tern that is observed in the training data. We define a co-
occurrence loss matrix that has high weights on cells that
correspond to labels that should not co-occur (Fig. 6 (a)).
After incorporating a loss term for the co-occurrence, the
predicted label distribution changes to become more simi-
lar to what we see in data. A heatmap showing the change
in label co-occurrence because of this loss term shows the
effect in reducing co-occurrence (Fig. 6(b)). Table 4 shows
the reduction in co-occurrence due to the loss.
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Figure 3: Simple CNN architecture

cloudy haze partly cloudy
No loss clear 0.006 0.0351 0.026
With loss clear 8.27e-05 2.88e-04 1.99e-04

Table 4: Co-occurrence of atmospheric labels before and
after applying co-occurrence loss.

Initial F2 0.8559
Final F2 0.8894
Improvement 0.033

Table 5: Improvement in F2 score from optimizing score
thresholds.

5.3. Choosing the classification thresholds

As this is a multi-label classification problem, we have to
independently choose the thresholds that separate presence
and absence of a label for an input image. Our hypothesis
is that a threshold different from 0.5 is likely to work better,
for two reasons. First, the data has significant class imbal-
ance, and score thresholds help compensate for it. Second,
the evaluation metric F2 score penalizes recall errors more
than precision errors, and score thresholds can help us use
this information.

There are two options for optimizing the score thresholds
- we can either bake this into the model learning using ap-
proaches like weighted training data. Or we can empirically
choose the best threshold after training is complete. Empir-
ically choosing the best threshold after the model is learnt
has been found to be an effective and efficient approach in
[18]. We try various thresholds between 0 and 1 for every
label, and find the combination that works the best. This
gives us a significant improvement in F2 score, as seen in
Table 5.

6. Conclusions and future work

In this project, we explored three areas relating to label-
ing satellite imagery - label correlation, validity of transfer
learning and optimization of score thresholds. We deter-
mined that addressing label correlation is important to pro-
duce sensible output in a multi-label classification task. On
transfer learning, we found that models trained on very dif-
ferent data can still show promising results by using funda-
mental structures in images, Finally, we saw that choosing
the right classification threshold is critical for good perfor-
mance of multi-label, recall oriented algorithms.

Future work in this area can explore the utility of seg-
mentation algorithms for such tasks. We have observed er-
rors where a river might be tagged both as a river and as a
road. Segmentation can help ensure that specific parts of the
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(a) 64x64 (b) 128x128 (c) 128x128 regularized

Figure 4: Train and validation loss for various input sizes.

Figure 5: Algorithm mistakes for correlated labels.

image do not get assigned multiple, incompatible labels.
Further utilizing label correlations is another area for

further exploration. In particular, approaches that incorpo-
rate label correlations in the learning process can be effec-
tive. Combinations of loss functions, for example combin-
ing binary cross-entropy over a subset of labels, with soft-
max over atmospheric condition labels is another approach
worth attempting.

Finally, we often noticed overfitting in the experiments
we conducted. Using image augmentation, through ap-
proaches like rotation, translation, flipping and cropping
can enable our network to train on more varied data and
be more robust to overfitting.
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