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Abstract

Methane emissions mapping is currently a labor inten-
sive process, but advances in remote sensing and computer
vision present the possibility of automating this process. We
apply computer vision techniques towards multi-class clas-
sification of methane emissions sources depicted in satellite
imagery. We use a location dataset of labeled methane emit-
ting facilities and gather a new image dataset from publicly
available sources. We implement baseline models and fine-
tune ResNet and Vision Transformer models for this task.
We explore various methods of data augmentation, hyper-
parameters, and optimization methods to increase classi-
fication accuracy. We find that fine-tuned ResNet-50 per-
forms the best on our task, due to its ability to recognize
small identifying features in the satellite imagery. We hope
that our work will aid in the development of a automated
and scalable system for identifying and classifying methane
emitting facilities.

1. Introduction
Methane is the second-largest contributor to the green-

house effect and its concentration in the atmosphere is cur-
rently increasing at a rate of around 1% per year. Methane is
a more potent greenhouse gas than carbon dioxide, and is a
major contributor to climate change. [5] Currently, multiple
global mapping satellite missions such as SCIAMACHY,
GOSAT, and TROPOMI provide atmospheric methane con-
centrations data. [11] These allow researchers to map the
concentration methane emissions using satellite imagery
[9], but it is difficult to classify the sources of methane
emissions from satellite imagery. An automated and scal-
able classification system would be instrumental to attribut-
ing methane emissions detected by these satellites to facil-
ities on the ground. This problem is important for carbon
accounting, emissions surveys, and environmental regula-
tion. We aim to leverage computer vision techniques to
classify facilities that are known to emit methane from pub-
licly available satellite imagery.

A recent article highlights the rise in satellite-based
methane detection methods and discusses the implications
of this on policy, industry, and finance. [5] Quantifying
emissions from space is a recent development, which has
advantages over ground-based monitoring. Ground based
sensors offer more accurate data, but it is localized and re-
quires an upfront investment. In contrast, remote sensing
can provide data about anywhere in the world, and it is
much cheaper to obtain.

Recently, the California Air Resources Board collabo-
rated with NASA to conduct the California Methane Survey,
which aimed to identify and classify large methane plumes
across California. This project surveyed over 10,000 square
miles, which identified 564 methane emitting facilities. [2]
However, the identification process was performed manu-
ally and this project took over 2 years to complete, and the
researchers highlight the need for consistent and continuous
observations of methane emitting facilities. [18]

This vast amount of satellite imagery makes human clas-
sification infeasible, which is why we aim to automate this
task using computer vision methods. We hope that this en-
ables methane emission source classification to be highly
scalable across the world to allow for continuous observa-
tion and identification of methane emission sources.

Using satellite imagery for classification comes with lim-
itations. Satellite imagery provides a top down view of the
world from far away, which means that the input data will
be limited in its spatial resolution [1]. Low spatial resolu-
tion results in increased difficulty in distinguishing between
objects, which is problem for classification tasks.

1.1. Problem Statement

This problem is formulated as a multi-class classification
of satellite images. Given a latitude and a longitude of a
location of a methane emitting facility, we collect a satellite
image of the surrounding region and predict its class.

For our project, we use a dataset with locations and
classes of methane emissions. We gather satellite imagery
corresponding to these locations from public sources which
is input into a image classification model. The model pre-

1



dicts the class of the facility corresponding to the location.
We fine-tune ResNet-50 and Vision Transformer (ViT)

models and compare performance against several baseline
classification methods. We also test various methods of data
augmentation. The fine-tuned ResNet-50 model attains a
maximum of 68% accuracy on the validation data. We con-
duct an analysis of the quantitative and qualitative results,
including accuracy, confusion matrices, saliency maps, and
common errors.

2. Related Works
One related work has explored classification of methane

emitting lakes. [14] However, they do not use computer
vision methods and rely on manual labelling. Our prob-
lem also focuses on human infrastructure as the source of
methane emissions, rather than natural sources.

Another work analyzes satellite imagery to find point
sources of industrial methane emissions. [10] These re-
searchers were able to identify a few dozen facilities that
were emitting extreme amounts of methane due to ineffi-
cient flaring operations. However, they use manual labelling
to classify these facilities. Our work aims to automate the
task of classifying the emissions sources, which will allow
our method to be easily scalable across the entire world.

The California Methane Survey uses satellite based
imaging of methane plumes to identify methane emitting
facilities across 10,000 square miles of California, and
demonstrated the use case of remote sensing to rapidly and
repeatedly assess large areas for an unclassified population
of methane point sources. [18] This work also uses manual
labelling for classification, which was done over the span
of 2 years. [2] This highlights the need for an automated
method for classifying these emission sources, which our
work aims to address. This work also does not solely rely
on satellite imagery, as the researchers also used mapping
software, location data, and other resources to determine
what these facilities were.

Some researchers have begun using satellite imagery to
create a database of oil and gas infrastructure. [19] Their
model (OGNet) outputs the probability that a given satel-
lite imagery tile contains an oil and gas facility. This is
used for binary classification of satellite images into tiles
that do contain oil and gas infrastructure and those that do
not. However, their dataset only contains 149 images of oil
refineries and 6,917 negative images, while our dataset con-
tains many more images of facilities that emit methane. Our
work also presumes that the satellite images we are analyz-
ing contain an image of a methane emitting facility, since
we are able to map locations of methane emissions using
satellites already. [9] We also perform multi-class classifi-
cation of many more types of methane emitting facilities,
rather than just binary classification of oil and gas infras-
tructure.

Several datasets and challenges are focused on auto-
mated classification and detection of human infrastructure
in satellite imagery, such as Functional Map of the World
(fMoW) [3] and xView [12]. Other work has focused on
deep learning methods to map solar photovoltaic panels [22]
and wind turbines [23] from satellite imagery. However,
none of these focus on classification of methane emitting
infrastructure specifically. Some, like xView, are also for-
mulated as object detection tasks rather than image classi-
fication tasks. We can use insights gained from these chal-
lenges and their solutions to improve our model.

3. Dataset and Features
We use the “Sources of Methane Emissions (Vista-CA)”

dataset, which was created by NASA under the North
American Carbon Program. [8, 17] The dataset contains
over 230,000 locations of methane emission sources in Cal-
ifornia, along with a label for what type of facility is at each
location. The different classes are as follows: [’Compost-
ing Sites’, ’Dairies’, ’Digesters’, ’Feed Lots’, ’Landfills’,
’NG Fueling Stations’, ’NG Stations’, ’Oil and Gas Facili-
ties’, ’Oil and Gas Field Boundaries’, ’Oil and Gas Wells’,
’Power Plants’, ’Processing Plants’, ’Refineries’, ’Storage
Fields’, ’Wastewater Treatment Plants’]. However, there
is a massive class imbalance in this dataset, with almost
200,000 examples of ’Oil and Gas Wells’. To mitigate this,
we take a maximum of 1000 examples from each class and
use that as our dataset. This leaves us with 5938 datapoints.

We corresponding satellite imagery satellite imagery
published under the National Agriculture Imagery Program
(NAIP) from 2016 to 2016, with resolution of 1 m/pixel. [8]
The images were processed and downloaded using Google
Earth Engine. [6] This imagery do not suffer from cloud
cover or haze because images were acquired on days with
low cloud cover. Each image contains RGB bands, and cap-
tures a 500 m × 500 m area centered at the coordinate of the
corresponding location in the dataset. However, some of the
coordinates are not placed exactly at the center of the facil-
ity, so they may only appear at the edge of the image.

We randomly select 20% of the datapoints for a valida-
tion set, and use the remaining 80% for training.

4. Methods
Using pytorch [15] and scikit-learn [16], we implement

various models to train on the satellite image dataset. Vari-
ous methods include:

• Naive Bayes Classifier

• Support Vector Machine Classifier

• ResNet-50

• Vision Transformer (ViT)



Figure 1. Example images from a few of the classes in the dataset.

4.1. Baseline Methods

We use a Naive Bayes classifier and a Support Vector
Machine classifier as our baseline models. Naive Bayes
is a rudimentary yet computationally efficient probabilistic
model that works better than random guesses, so it is useful
as a initial baseline. Naive Bayes chooses the class satisfy-
ing the equation:

ŷ = argmax
y

P (y)

n∏
i=1

P (xi | y).

For our purposes, xi represents each pixel, and ŷ is the
predicted label. The Naive Bayes algorithm assumes that
each pixel is independent, which is an incorrect assumption.
We expect this model to perform relatively poorly.

Support Vector Machine (SVM) works to create very dis-
tinct decision boundary between classes. This could be vi-
sualized as a hyperplane to separate images corresponding
to their class. Since our data is very high dimensional, a
fully trained SVM model will attain very close to 100 per-
cent accuracy for the training data, but not necessarily the
test data. We use the scikit-learn implementations of these
models.

4.2. Deep Learning Methods

We fine-tune a ResNet-50 model pretrained on the Ima-
geNet dataset on our training data for 20 epochs. ResNet-
50 is a popular deep learning residual model used for image

classification [7]. For our classification task, we replace the
last linear layer to one with 15 nodes.

We also fine-tune Vision Transformers [4], which are a
new technique that is advertised that it can attain excellent
results compared to convolutional networks while requiring
fewer computational resources to train. ViT adapts trans-
former methods which were used in NLP for computer vi-
sion tasks. Instead, ViT uses 16x16 pixel patches to feed
into its attention heads. Similar to ResNet, we replaced the
head with 15 nodes for our downstream task.

For these models, we use the torchvision implementa-
tion. [13]

We optimize these methods to minimize cross entropy
loss, which can be represented by this equation:

L = − 1

N

∑
i

yi ˙log(ŷi)

where N is our total number of samples, y is the vector of
true labels for the sample (in our case, one hot vector for our
classes), yi is our predicted probabilities for that sample.

5. Experiments
For SVM and Naive Bayes, we use the default config-

urations specified by scikit-learn. We do not perform any
pre-processing or feature extraction.

For the deep learning models, we use a batch size of 32,
and use cross entropy loss as the loss function. Our batch
size was chosen using a validation set, and was also im-
pacted by the amont of GPU memory available.

We chose to use ResNet-50 and ViT-B/16 pretrained on
ImageNet. We also tried these models without pretraining,
but stopped these experiments early as their performance
was far worse.

ResNet-50 takes a 224 × 224 pixel image as input
for data. We experimented with several methods of pre-
processing to make the input size of the image match the
input size of ResNet: center cropping the image to 224 ×
224 pixels and resizing the image to 224 × 224 pixels.

As we observed a high degree of overfitting in early ex-
periments, we also experimented with several image trans-
forms in the training phase, specifically random cropping
and vertical and horizontal flipping.

We train the ResNet models using SGD optimizer with
learning rate 1 × 10−3, momentum 0.9. We also ran ex-
periments where we trained ResNet using Adam optimizer,
but they yielded worse results so we do not report the re-
sults here. SGD was also the optimizer used in the original
ResNet paper [7], and supporting literature shows that in an
over-parameterized setting, adaptive optimization methods
like AdaGrad, RMSProp, and Adam do not generalize as
well as SGD. [21] We believe that this applies to our situa-
tion since ResNet-50 has a high number of parameters and
we are only doing classification for 15 classes.



For Vision Transformers, we also used a 224 × 224 pixel
image as input. We used a combination of random crop-
ping and vertical and horizontal flipping during the train-
ing phase, since that yielded the best results in our ResNet-
50 experiments. We used the Adam optimizer which was
shown to perform the best in the original paper. [4]

To compare results, we used final training and validation
accuracy. This was computed as the percentage of correctly
labeled images using the highest probability outputted by
the model.

6. Results and Discussion

Our results are seen in Table 1.

Table 1. Results for Classification Models
Model Training Acc Validation Acc

Naive Bayes 0.2378 0.2205
SVM 0.9915 0.3047

ResNet50 - Cropped 0.9385 0.6305
ResNet50 - Resized 0.9242 0.6069

ResNet50 - Rand Crop 0.8432 0.6571
ResNet50 - Rand Crop + Flip 0.8276 0.6838

ViT-B/16 0.4817 0.4857

As expected, SVM attains near perfect training accuracy
but relatively low validation accuracy. Naive Bayes does
not perform well on this task. The fine-tuned ResNet-50
models perform the best, with the best validation accuracy
around 68.3%. The ResNet-50 models do show a high de-
gree of overfitting, which is expected given the small size
of our dataset. ViT-B/16 performs relatively poorly, but in-
terestingly did not exhibit overfitting.

It is worth noting that this task is also very difficult for
humans to perform if only given the satellite imagery, so it is
impressive that our best model was able to correctly classify
a majority of the images. Many of the classes are hard to
distinguish, as they do not all have distinctive features that
separate one from another. This is in contrast to datasets
like CIFAR-10, where each class is very distinct from the
others. Therefore, the accuracy that our model is able to
achieve is quite good considering the difficulty of the task.

One surprising result was the poor accuracy of the Vision
Transformer model. It took on average 70 minutes to run,
yet had lower accuracy than ResNet50. We believe this is
due to the small features that are present in satellite imagery
in addition to the class disparity of our dataset. Transform-
ers work well when the image patches have some sort of
sequential structure, where features on one patch may con-
tinue into another. However, in our satellite images, the fea-
tures that determine class, such as buildings, storage tanks,
and cows, are small enough that they fit into one patch.
This leads us to believe that the attention mechanism is not

particularly helpful in this application since the sequential
structure of the data is not as prominent.

6.1. Confusion Matrix

6.1.1 ResNet

Figure 2. Confusion matrix of the ResNet model for the validation
data. The true class appears on the y-axis, and the predicted class
is on the x-axis.

We created a confusion matrix for our best performing
model to analyze the most common errors it made. As we
expected, the common mistakes that the model made were
also ones that humans would make. For example, NG Sta-
tions, NG Fueling Stations, and Power Plants were often
mistaken for each other. Upon inspection of the images,
these classes have many landmarks in common, such as
buildings, storage tanks, and roads. Therefore, it seems that
our model is also learning these landmarks as a way to clas-
sify the images.

The model performed particularly well on classifying
Dairies and Oil and Gas Wells. This makes sense because
both of these classes have unique identifying landmarks that
none of the other classes possess. Images in the Dairies
class contain cows, while images in the Oil and Gas Wells
class contain oil and gas drills. This makes it easy even for
humans to classify these images, so it is no surprise that the
model is also able to do well on these.

It seems that the model had a difficult time classifying



Landfills, as it would often mistake landfills for many other
classes. Upon inspection of the data, it is apparent that land-
fills can vary widely, appearing in many sizes, shapes, and
textures. Landfills do not have any sort of unique identi-
fying landmarks, and may appear near homes, roads, and
other landmarks commonly seen in other classes. The land-
fills in this dataset were not limited to landfills currently in
use, so some of the landfills may have been covered over
with dirt and vegetation. Therefore, it is difficult for even a
human to distinguish whether or not an image is a landfill.

6.1.2 Vision Transformer

Figure 3. Confusion matrix of the Vision Transformer model for
the validation data. The true class appears on the y-axis, and the
predicted class is on the x-axis.

For the Vision Transformer model, it performs best on
images for Dairies, Oil and Gas Wells. Similarly to the
ResNet model, the Vision Transformer was able to find the
unique identifying features of these images.

One large difference in comparison to the ResNet model
was how they identified Wastewater Treatment Plants.
There were not many samples to begin with, but the ResNet
model was still able to identify some of those images cor-
rectly. However, the Vision Transformer model identifies
none of these labels correctly.

6.2. Saliency Maps

We also create saliency maps to visualize the importance
the model puts on the individual pixels of an image to make
its prediction. [20] Saliency maps are beneficial for gaining
insights on what a model pays attention to, and are created
by using gradient ascent to maximize the class score for an
image. For our case, we use the image-specific approach,
where we input the image and the correct class to get the
saliency map for that image.

Figure 4. Example Saliency maps for validation images for ResNet
and ViT in that order.

As seen in Figure 4, it seems that the main reason why
ResNet outperformed Vision Transformers was due to the
fact that the size of the identifying features for each is too
small for the Vision Transformers model.

In the first example, this is a dairy farm with some num-
ber of cows. The ResNet model does pay attention to the
areas with cows, but the ViT model does not pay attention
to that region.

In the second example for NG Stations, the Vision
Transformer model pays attention to the lower right areas.
These are not too important in terms of identifying features.
However, the ResNet model pays attention to the central
area of the image, which includes the main part of the sta-
tion.

For the third example for Wastewater Treatment Plants,
the ResNet correctly pays attention to the right side of the
image, which is the treatment plant and the surrounding
area itself instead of the water. On the other hand, the Vi-
sion Transformer model pays attention to the area where the
bridge meets the land.



Overall, the Vision Transfomer model is unable to pay
attention to the smaller features in the images due to the
patch size being larger than many of the defining landmarks
of each class. Due to the small identifying features for satel-
lite imagery, ResNet is more suited for the task.

6.3. Qualitative Results

We use softmax on the logits to get a probability dis-
tribution over the classes for the images in the validation
set. This allows us to identify common errors and assess
the confidence of the model in its predictions.

Figure 5. True labels and predictions with probabilities for a few
example images in the test set using the best ResNet model.

As we can see in Figure 5, the model ranges from not
very confident about its prediction for the images containing
Power Pants and Landfills, to very confident about the pre-
dictions for Dairies and Oil and Gas Wells. We believe that
this occurs due to the diversity of the images in each class.
Since most images for Dairies look similar to one another,
in that they have a large building and cows (which do not ap-
pear in most other classes), if the model detects these land-
marks, then it can be very confident that the image is in the
Dairies class. The same can be said for Oil and Gas Wells,
since these images contain many oil and gas drills, which
usually do not appear in other classes.

For the Power Pants and Landfills classes, these appear

in many different regions and have a much more varied ap-
pearance. In addition, there are many types of power plants
and landfills which further diversifies the classes, and they
do not have very specific identifying features, making the
model much less confident about its predictions for these.

We also see that for the Power Plants image, the model
also outputs a high probability for NG Fueling Stations,
likely due to the storage tanks that appear at the top center
of the image. For the Landfills image, the model predicts
Composting Sites as the most likely class, due to the pres-
ence of vegetation, dirt, and buildings, which are also iden-
tifying features for that class. In fact, most images of Land-
fills do not contain commercial buildings, which makes this
image different, leading to the incorrect classification.

Many other common errors such as these can be seen.
Many of the Natural Gas and Oil and Gas facilities are con-
fused with each other due to the presence of common in-
frastructure and landmarks. These facilities are also often
located near one another, leading to the common buildings
and the ground texture. On the other hand, Feed Lots are
often confused for Dairies, due to the presence of cows in
Feed Lots. However, the number of examples of Dairies is
higher, so the model classifies these images as Dairies in-
stead.

7. Conclusion and Future Work

Our work demonstrates that methane emitting facilities
can be classified using deep learning methods, which paves
the way for future works that can perform this task on a
global scale. We tested ResNet and Vision Transformer
models and compared them to baseline models and found
that ResNet is more suited for this task. The small size
of identifying features is too small for the 16x16 patches
that the Vision Transformer model uses. On the other hand,
ResNet is still able to pay attention to these smaller features.

Due to time and computation constraints, we trained our
deep learning models for 20 epochs. If given more time,
we would experiment by changing our learning rates and
number of epochs to determine the best setting for these
hyperparameters.

In addition, we worked on a dataset with methane emit-
ting facilities. In the future, we would like to create an end-
to-end model that uses a methane concentration map to se-
lect locations with high emissions and then classify them. It
would also be interesting to see how auxiliary information
(such as location, methane concentration, and zoning) may
impact the performance of the model.

We hope that our work will aid in the development of a
automated and scalable system for identifying and classify-
ing methane emitting facilities, and that it will aid in efforts
to decrease methane emissions through carbon accounting
and environmental regulation.



8. Contributions
WZ: Gathered the location dataset. Wrote the code to

export the image dataset from Google Earth Engine. Im-
plemented dataloader and model training loop in pytorch,
and ran the ResNet experiments. Created visualizations for
confusion matrix, predictions, and probabilities.

KU: Set up AWS for experiments. Implemented baseline
models (SVM and Naive Bayes). Ran ViT experiments, and
generated saliency maps.

This code was used as foundation to generate saliency
maps: https://github.com/sunnynevarekar/
pytorch-saliency-maps/blob/master/
Saliency_maps_in_pytorch.ipynb
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