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Lecture 14:
Reinforcement Learning
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Administrative

2

Grades: 
- Midterm grades released last night, see Piazza for more 

information and statistics
- A2 and milestone grades scheduled for later this week
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Administrative
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Projects:
- All teams must register their project, see Piazza for registration 

form
- Tiny ImageNet evaluation server is online
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Administrative

4

Survey: 
- Please fill out the course survey!
- Link on Piazza or https://goo.gl/forms/eQpVW7IPjqapsDkB2

https://goo.gl/forms/eQpVW7IPjqapsDkB2
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So far… Supervised Learning

5

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
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So far… Unsupervised Learning

6

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc. 2-d density estimation

2-d density images left and right 
are CC0 public domain

1-d density estimation

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Today: Reinforcement Learning

7

Problems involving an agent 
interacting with an environment, 
which provides numeric reward 
signals

Goal: Learn how to take actions 
in order to maximize reward
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Overview

- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients
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Agent

Environment

Reinforcement Learning
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Agent

Environment

State st

Reinforcement Learning
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Agent

Environment

Action at
State st

Reinforcement Learning
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Agent

Environment

Action at
State st Reward rt

Reinforcement Learning
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Agent

Environment

Action at
State st Reward rt

Next state st+1

Reinforcement Learning
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Cart-Pole Problem

14

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
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Robot Locomotion

15

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright + 
forward movement
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Atari Games

16

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step
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Go

17

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
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Agent

Environment

Action at
State st Reward rt

Next state st+1

How can we mathematically formalize the RL problem?
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Markov Decision Process

19

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the 

world

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor
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Markov Decision Process
- At time step t=0, environment samples initial state s0 ~ p(s0)
- Then, for t=0 until done:

- Agent selects action at
- Environment samples reward rt ~ R( . | st, at)
- Environment samples next state st+1 ~ P( . | st, at)
- Agent receives reward rt and next state st+1

- A policy Ḗ is a function from S to A that specifies what action to take in 
each state

- Objective: find policy Ḗ* that maximizes cumulative discounted reward: 

20
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A simple MDP: Grid World

21

Objective: reach one of terminal states (greyed out) in 
least number of actions

★

★

actions = {

1. right

2. left

3. up

4. down

}

Set a negative “reward” 
for each transition 

(e.g. r = -1)

states
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A simple MDP: Grid World

22

Random Policy Optimal Policy

★

★

★

★
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The optimal policy Ḗ*

23

We want to find optimal policy Ḗ* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

The optimal policy Ḗ*

24

We want to find optimal policy Ḗ* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
Maximize the expected sum of rewards!

Formally:  with 
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Definitions: Value function and Q-value function

25

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …
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Definitions: Value function and Q-value function

26

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from following the policy 
from state s:
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Definitions: Value function and Q-value function

27

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from following the policy 
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 
taking action a in state s and then following the policy:
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Bellman equation

28

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Bellman equation

29

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 
then the optimal strategy is to take the action that maximizes the expected value of 

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:
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Bellman equation

30

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 
then the optimal strategy is to take the action that maximizes the expected value of 

The optimal policy Ḗ*  corresponds to taking the best action in any state as specified by Q*  

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:
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Solving for the optimal policy

31

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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What’s the problem with this?

Solving for the optimal policy

32

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state 
pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy

33

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state 
pixels, computationally infeasible to compute for entire state space!

Solution:  use a function approximator to estimate Q(s,a). E.g. a neural network! 

Solving for the optimal policy

34

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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Solving for the optimal policy: Q-learning 

35

Q-learning: Use a function approximator to estimate the action-value function 
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Solving for the optimal policy: Q-learning 

36

Q-learning: Use a function approximator to estimate the action-value function 

If the function approximator is a deep neural network => deep q-learning!
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Solving for the optimal policy: Q-learning 

37

Q-learning: Use a function approximator to estimate the action-value function 

If the function approximator is a deep neural network => deep q-learning!

function parameters (weights)
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Remember: want to find a Q-function that satisfies the Bellman Equation: 

38

Solving for the optimal policy: Q-learning 
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Remember: want to find a Q-function that satisfies the Bellman Equation: 

39

Loss function:

where

Solving for the optimal policy: Q-learning 

Forward Pass
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Remember: want to find a Q-function that satisfies the Bellman Equation: 

40

Loss function:

where

Solving for the optimal policy: Q-learning 

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):
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Remember: want to find a Q-function that satisfies the Bellman Equation: 

41

Loss function:

where
Iteratively try to make the Q-value 
close to the target value (yi) it 
should have, if Q-function 
corresponds to optimal Q* (and 
optimal policy Ḗ*)

Solving for the optimal policy: Q-learning 

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):
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Case Study: Playing Atari Games 

42

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network Architecture

43

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network Architecture

44

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Input: state st

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network Architecture

45

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers, 
FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

                    :
neural network 
with weights

Q-network Architecture

46

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network Architecture

47

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network Architecture

48

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

A single feedforward pass 
to compute Q-values for all 
actions from the current 
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Remember: want to find a Q-function that satisfies the Bellman Equation: 

49

Loss function:

where
Iteratively try to make the Q-value 
close to the target value (yi) it 
should have, if Q-function 
corresponds to optimal Q* (and 
optimal policy Ḗ*)

Training the Q-network: Loss function (from before)

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay

50

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing 

action is to move left, training samples will be dominated by samples from left-hand 
size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay

51

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing 

action is to move left, training samples will be dominated by samples from left-hand 
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, 

instead of consecutive samples 

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay

52

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing 

action is to move left, training samples will be dominated by samples from left-hand 
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, 

instead of consecutive samples Each transition can also contribute 
to multiple weight updates
=> greater data efficiency

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

Initialize state 
(starting game 
screen pixels) at the 
beginning of each 
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

For each timestep t 
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

With small probability, 
select a random 
action (explore), 
otherwise select 
greedy action from 
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

Take the action (at), 
and observe the 
reward rt and next 
state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

Store transition in 
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

Experience Replay: 
Sample a random 
minibatch of transitions 
from replay memory 
and perform a gradient 
descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Video by Károly Zsolnai-Fehér. Reproduced with permission.

https://www.youtube.com/watch?v=V1eYniJ0Rnk

http://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Policy Gradients

63

What is a problem with Q-learning? 
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Policy Gradients

64

What is a problem with Q-learning? 
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of 
policies?
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients

65



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

Policy Gradients

66
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

Policy Gradients

67

Gradient ascent on policy parameters!
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REINFORCE algorithm

68

Mathematically, we can write:

Where r(ᶦ) is the reward of a trajectory
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REINFORCE algorithm

69

Expected reward:
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REINFORCE algorithm

70

Now let’s differentiate this:

Expected reward:
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REINFORCE algorithm

71

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ 

Now let’s differentiate this:

Expected reward:
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REINFORCE algorithm

72

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ 

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

REINFORCE algorithm

73

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ 

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick:
If we inject this back:

Expected reward:
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REINFORCE algorithm

74

Can we compute those quantities without knowing the transition probabilities?

We have:
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REINFORCE algorithm

75

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:
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REINFORCE algorithm

76

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!
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REINFORCE algorithm

77

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory ᶦ, we can estimate J(ᶚ) with

Doesn’t depend on 
transition probabilities!
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Intuition

78

Gradient estimator:

Interpretation:
- If r(ᶦ) is high, push up the probabilities of the actions seen
- If r(ᶦ) is low, push down the probabilities of the actions seen
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Intuition

79

Gradient estimator:

Interpretation:
- If r(ᶦ) is high, push up the probabilities of the actions seen
- If r(ᶦ) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!
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Intuition

80

Gradient estimator:

Interpretation:
- If r(ᶦ) is high, push up the probabilities of the actions seen
- If r(ᶦ) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is 
really hard. Can we help the estimator?
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Variance reduction

81

Gradient estimator:
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Variance reduction

82

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state
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Variance reduction

83

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Second idea: Use discount factor ᶕ to ignore delayed effects
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Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For 
example, if rewards are all positive, you keep pushing up probabilities of 
actions.

What is important then? Whether a reward is better or worse than what you 
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now: 

84



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

How to choose the baseline?

85

A simple baseline: constant moving average of rewards experienced so far 
from all trajectories
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How to choose the baseline?
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A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla 
REINFORCE”
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How to choose the baseline?
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A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

How to choose the baseline?
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A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

A: Q-function and value function!
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How to choose the baseline?
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A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

A: Q-function and value function!
Intuitively, we are happy with an action at in a state st if                                       
is large. On the contrary, we are unhappy with an action if it’s small.
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How to choose the baseline?
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A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

A: Q-function and value function!
Intuitively, we are happy with an action at in a state st if                                       
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:
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Actor-Critic Algorithm
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Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning 
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor 
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values 
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an 

action was better than expected
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Actor-Critic Algorithm
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Initialize policy parameters ᶚ, critic parameters ᶰ
For iteration=1, 2 … do

Sample m trajectories under the current policy

For i=1, …, m do
For t=1, ... , T do

End for
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REINFORCE in action: Recurrent Attention Model (RAM)
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Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

[Mnih et al. 2014]
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REINFORCE in action: Recurrent Attention Model (RAM)

94

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

glimpse

[Mnih et al. 2014]
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REINFORCE in action: Recurrent Attention Model (RAM)
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NN

(x1, y1)

Input 
image

[Mnih et al. 2014]
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REINFORCE in action: Recurrent Attention Model (RAM)
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NN

(x1, y1)

NN

(x2, y2)

Input 
image

[Mnih et al. 2014]
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REINFORCE in action: Recurrent Attention Model (RAM)
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NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

Input 
image

[Mnih et al. 2014]
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REINFORCE in action: Recurrent Attention Model (RAM)
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NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

Input 
image

[Mnih et al. 2014]
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NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input 
image

y=2

REINFORCE in action: Recurrent Attention Model (RAM)

[Mnih et al. 2014]
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REINFORCE in action: Recurrent Attention Model (RAM)

[Mnih et al. 2014]

Has also been used in many other tasks including fine-grained image recognition, 
image captioning, and visual question-answering!
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More policy gradients: AlphaGo
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How to beat the Go world champion:
- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games, 

then continue training using policy gradient (play against itself from random 
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree 

Search algorithm to select actions by lookahead search

This image is CC0 
public domain

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and 

recent ones (deep RL)

This image is CC0 public domain

[Silver et al., 
Nature 2016]

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
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Summary

- Policy gradients: very general but suffer from high variance so 
requires a lot of samples. Challenge: sample-efficiency

- Q-learning: does not always work but when it works, usually more 
sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(ᶚ), often good 

enough!
- Q-learning: Zero guarantees since you are approximating Bellman 

equation with a complicated function approximator

10
2
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Next Time

10
3

Guest Lecture: Song Han
- Energy-efficient deep learning
- Deep learning hardware
- Model compression
- Embedded systems
- And more...


